-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathcommon.py
458 lines (421 loc) · 20.4 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# -*- coding:utf-8 -*-
"""
Author: KittenCN
"""
import requests
import pandas as pd
from bs4 import BeautifulSoup
from loguru import logger
from config import *
import json
import datetime
import numpy as np
import tensorflow as tf
import warnings
def get_data_run(name, cq=0):
"""
:param name: 玩法名称
:return:
"""
current_number = get_current_number(name)
logger.info("【{}】最新一期期号:{}".format(name_path[name]["name"], current_number))
logger.info("正在获取【{}】数据。。。".format(name_path[name]["name"]))
if not os.path.exists(name_path[name]["path"]):
os.makedirs(name_path[name]["path"])
if cq == 1 and name == "kl8":
data = spider_cq(name, 1, current_number, "train")
else:
data = spider(name, 1, current_number, "train")
if "data" in os.listdir(os.getcwd()):
logger.info("【{}】数据准备就绪,共{}期, 下一步可训练模型...".format(name_path[name]["name"], len(data)))
else:
logger.error("数据文件不存在!")
def get_url(name):
"""
:param name: 玩法名称
:return:
"""
url = "https://datachart.500.com/{}/history/".format(name)
path = "newinc/history.php?start={}&end={}&limit={}"
if name in ["qxc", "pls", "sd"]:
path = "inc/history.php?start={}&end={}&limit={}"
elif name in ["kl8"]:
url = "https://datachart.500.com/{}/zoushi/".format(name)
path = "newinc/jbzs_redblue.php?from=&to=&shujcount=0&sort=1&expect=-1"
return url, path
def get_current_number(name):
""" 获取最新一期数字
:return: int
"""
url, _ = get_url(name)
if name in ["qxc", "pls", "sd"]:
r = requests.get("{}{}".format(url, "inc/history.php"), verify=False)
elif name in ["ssq", "dlt"]:
r = requests.get("{}{}".format(url, "history.shtml"), verify=False)
elif name in ["kl8"]:
r = requests.get("{}{}".format(url, "newinc/jbzs_redblue.php"), verify=False)
r.encoding = "gb2312"
soup = BeautifulSoup(r.text, "lxml")
if name in ["kl8"]:
current_num = soup.find("div", class_="wrap_datachart").find("input", id="to")["value"]
else:
current_num = soup.find("div", class_="wrap_datachart").find("input", id="end")["value"]
return current_num
def spider_cq(name="kl8", start=1, end=999999, mode="train", windows_size=0):
if name == "kl8" and mode == "train":
url = "https://data.917500.cn/kl81000_cq_asc.txt"
r = requests.get(url, headers = {'User-agent': 'chrome'})
data = []
lines = sorted(r.text.split('\n'), reverse=True)
for line in lines:
if len(line) < 10:
continue
item = dict()
line = line.split(',')
line = line[0].split(' ')
# item[u"id"] = line[0]
strdate = line[1].split('-')
item[u"日期"] = strdate[0] + strdate[1] + strdate[2]
item[u"期数"] = line[0]
for i in range(1, 21):
item[u"红球_{}".format(i)] = line[i + 1]
data.append(item)
df = pd.DataFrame(data)
df.to_csv("{}{}".format(name_path[name]["path"], data_cq_file_name), encoding="utf-8",index=False)
return pd.DataFrame(data)
elif name == "kl8" and mode == "predict":
ori_data = pd.read_csv("{}{}".format(name_path[name]["path"], data_cq_file_name))
data = []
if windows_size > 0:
ori_data = ori_data[0:windows_size]
for i in range(len(ori_data)):
item = dict()
item[u"期数"] = ori_data.iloc[i, 1]
for j in range(20):
item[u"红球_{}".format(j+1)] = ori_data.iloc[i, j+2]
data.append(item)
return pd.DataFrame(data)
else:
spider(name, start, end, mode)
def spider(name="ssq", start=1, end=999999, mode="train", windows_size=0):
""" 爬取历史数据
:param name 玩法
:param start 开始一期
:param end 最近一期
:param mode 模式,train:训练模式,predict:预测模式(训练模式会保持文件)
:return:
"""
if mode == "train":
url, path = get_url(name)
limit = int(end) - int(start) + 1
url = "{}{}".format(url, path.format(int(start), int(end), limit))
r = requests.get(url=url, verify=False)
r.encoding = "gb2312"
soup = BeautifulSoup(r.text, "lxml")
if name in ["ssq", "dlt", "kl8"]:
trs = soup.find("tbody", attrs={"id": "tdata"}).find_all("tr")
elif name in ["qxc", "pls", "sd"]:
trs = soup.find("div", class_="wrap_datachart").find("table", id="tablelist").find_all("tr")
data = []
for tr in trs:
item = dict()
if name == "ssq":
item[u"期数"] = tr.find_all("td")[0].get_text().strip()
for i in range(6):
item[u"红球_{}".format(i+1)] = tr.find_all("td")[i+1].get_text().strip()
item[u"蓝球"] = tr.find_all("td")[7].get_text().strip()
data.append(item)
elif name == "dlt":
item[u"期数"] = tr.find_all("td")[0].get_text().strip()
for i in range(5):
item[u"红球_{}".format(i+1)] = tr.find_all("td")[i+1].get_text().strip()
for j in range(2):
item[u"蓝球_{}".format(j+1)] = tr.find_all("td")[6+j].get_text().strip()
data.append(item)
elif name in ["pls", "sd", "qxc"]:
if len(tr.find_all("td")) < 2:
continue
if tr.find_all("td")[0].get_text().strip() == "注数" or tr.find_all("td")[1].get_text().strip() == "中奖号码":
continue
item[u"期数"] = tr.find_all("td")[0].get_text().strip()
numlist = tr.find_all("td")[1].get_text().strip().split(" ")
# if name == "qxc":
# red_nums = 7
# elif name in ["pls", "sd"]:
# red_nums = 3
red_nums = len(numlist)
for i in range(red_nums):
item[u"红球_{}".format(i+1)] = numlist[i]
data.append(item)
elif name == "kl8":
tds = tr.find_all("td")
index = 1
for td in tds:
if td.has_attr('align') and td['align'] == 'center':
item[u"期数"] = td.get_text().strip()
elif td.has_attr('class') and td['class'][0] == 'chartBall01':
item[u"红球_{}".format(index)] = td.get_text().strip()
index += 1
if item:
data.append(item)
else:
logger.warning("抱歉,没有找到数据源!")
df = pd.DataFrame(data)
df.to_csv("{}{}".format(name_path[name]["path"], data_file_name), encoding="utf-8")
return pd.DataFrame(data)
elif mode == "predict":
ori_data = pd.read_csv("{}{}".format(name_path[name]["path"], data_file_name))
data = []
if windows_size > 0:
ori_data = ori_data[0:windows_size]
for i in range(len(ori_data)):
item = dict()
if (ori_data.iloc[i, 1] < int(start) or ori_data.iloc[i, 1] > int(end)) and windows_size == 0:
continue
if name == "ssq":
item[u"期数"] = ori_data.iloc[i, 1]
for j in range(6):
item[u"红球_{}".format(j+1)] = ori_data.iloc[i, j+2]
item[u"蓝球"] = ori_data.iloc[i, 8]
data.append(item)
elif name == "dlt":
item[u"期数"] = ori_data.iloc[i, 1]
for j in range(5):
item[u"红球_{}".format(j+1)] = ori_data.iloc[i, j+2]
for k in range(2):
item[u"蓝球_{}".format(k+1)] = ori_data.iloc[i, 7+k]
data.append(item)
elif name in ["pls", "sd", "qxc"]:
# if name == "qxc":
# red_nums = 7
# elif name in ["pls", "sd"]:
# red_nums = 3
red_nums = len(ori_data.columns) - 2
item[u"期数"] = ori_data.iloc[i, 1]
for j in range(red_nums):
item[u"红球_{}".format(j+1)] = ori_data.iloc[i, j+2]
data.append(item)
elif name == "kl8":
item[u"期数"] = ori_data.iloc[i, 1]
for j in range(20):
item[u"红球_{}".format(j+1)] = ori_data.iloc[i, j+2]
data.append(item)
else:
logger.warning("抱歉,没有找到数据源!")
return pd.DataFrame(data)
filedata = []
filetitle = []
# 关闭eager模式
tf.compat.v1.disable_eager_execution()
warnings.filterwarnings('ignore')
red_graph = tf.compat.v1.Graph()
blue_graph = tf.compat.v1.Graph()
pred_key_d = {}
red_sess = tf.compat.v1.Session(graph=red_graph)
blue_sess = tf.compat.v1.Session(graph=blue_graph)
mini_args = {}
# current_number = get_current_number(mini_args.name)
def setMiniargs(args):
global mini_args
mini_args = args
def init():
global mini_args,pred_key_d, red_graph, blue_graph, red_sess, blue_sess, filedata, filetitle
filedata = []
filetitle = []
red_graph = tf.compat.v1.Graph()
blue_graph = tf.compat.v1.Graph()
pred_key_d = {}
red_sess = tf.compat.v1.Session(graph=red_graph)
blue_sess = tf.compat.v1.Session(graph=blue_graph)
mini_args = {}
def run_predict(window_size):
global pred_key_d, red_graph, blue_graph, red_sess, blue_sess
if window_size != 0:
model_args[mini_args.name]["model_args"]["windows_size"] = window_size
redpath = model_path + model_args[mini_args.name]["pathname"]['name'] + str(model_args[mini_args.name]["model_args"]["windows_size"]) + model_args[mini_args.name]["subpath"]['red']
bluepath = model_path + model_args[mini_args.name]["pathname"]['name'] + str(model_args[mini_args.name]["model_args"]["windows_size"]) + model_args[mini_args.name]["subpath"]['blue']
if mini_args.name == "ssq":
red_graph = tf.compat.v1.Graph()
with red_graph.as_default():
red_saver = tf.compat.v1.train.import_meta_graph(
"{}red_ball_model.ckpt.meta".format(redpath)
)
red_sess = tf.compat.v1.Session(graph=red_graph)
red_saver.restore(red_sess, "{}red_ball_model.ckpt".format(redpath))
logger.info("已加载红球模型!窗口大小:{}".format(model_args[mini_args.name]["model_args"]["windows_size"]))
blue_graph = tf.compat.v1.Graph()
with blue_graph.as_default():
blue_saver = tf.compat.v1.train.import_meta_graph(
"{}blue_ball_model.ckpt.meta".format(bluepath)
)
blue_sess = tf.compat.v1.Session(graph=blue_graph)
blue_saver.restore(blue_sess, "{}blue_ball_model.ckpt".format(bluepath))
logger.info("已加载蓝球模型!窗口大小:{}".format(model_args[mini_args.name]["model_args"]["windows_size"]))
# 加载关键节点名
with open("{}/{}".format(model_path + model_args[mini_args.name]["pathname"]['name'] + str(model_args[mini_args.name]["model_args"]["windows_size"]), pred_key_name)) as f:
pred_key_d = json.load(f)
current_number = get_current_number(mini_args.name)
logger.info("【{}】最近一期:{}".format(name_path[mini_args.name]["name"], current_number))
elif mini_args.name == "dlt":
red_graph = tf.compat.v1.Graph()
with red_graph.as_default():
red_saver = tf.compat.v1.train.import_meta_graph(
"{}red_ball_model.ckpt.meta".format(redpath)
)
red_sess = tf.compat.v1.Session(graph=red_graph)
red_saver.restore(red_sess, "{}red_ball_model.ckpt".format(redpath))
logger.info("已加载红球模型!窗口大小:{}".format(model_args[mini_args.name]["model_args"]["windows_size"]))
blue_graph = tf.compat.v1.Graph()
with blue_graph.as_default():
blue_saver = tf.compat.v1.train.import_meta_graph(
"{}blue_ball_model.ckpt.meta".format(bluepath)
)
blue_sess = tf.compat.v1.Session(graph=blue_graph)
blue_saver.restore(blue_sess, "{}blue_ball_model.ckpt".format(bluepath))
logger.info("已加载蓝球模型!窗口大小:{}".format(model_args[mini_args.name]["model_args"]["windows_size"]))
# 加载关键节点名
with open("{}/{}".format(model_path + model_args[mini_args.name]["pathname"]['name'] + str(model_args[mini_args.name]["model_args"]["windows_size"]), pred_key_name)) as f:
pred_key_d = json.load(f)
current_number = get_current_number(mini_args.name)
logger.info("【{}】最近一期:{}".format(name_path[mini_args.name]["name"], current_number))
elif mini_args.name in ["pls", "kl8", "qxc", "sd"]:
red_graph = tf.compat.v1.Graph()
with red_graph.as_default():
red_saver = tf.compat.v1.train.import_meta_graph(
"{}red_ball_model.ckpt.meta".format(redpath)
)
red_sess = tf.compat.v1.Session(graph=red_graph)
red_saver.restore(red_sess, "{}red_ball_model.ckpt".format(redpath))
logger.info("已加载红球模型!窗口大小:{}".format(model_args[mini_args.name]["model_args"]["windows_size"]))
# 加载关键节点名
with open("{}/{}".format(model_path + model_args[mini_args.name]["pathname"]['name'] + str(model_args[mini_args.name]["model_args"]["windows_size"]), pred_key_name)) as f:
pred_key_d = json.load(f)
current_number = get_current_number(mini_args.name)
logger.info("【{}】最近一期:{}".format(name_path[mini_args.name]["name"], current_number))
def get_year():
""" 截取年份
eg:2020-->20, 2021-->21
:return:
"""
return int(str(datetime.datetime.now().year)[-2:])
def try_error(name, predict_features, windows_size):
""" 处理异常
"""
if len(predict_features) != windows_size:
logger.warning("期号出现跳期,期号不连续!开始查找最近上一期期号!本期预测时间较久!")
last_current_year = (get_year() - 1) * 1000
max_times = 160
while len(predict_features) != windows_size:
# predict_features = spider(name, last_current_year + max_times, get_current_number(name), "predict")[[x[0] for x in ball_name]]
if mini_args.cq == 0:
predict_features = spider(name, last_current_year + max_times, get_current_number(name), "predict", windows_size)
else:
predict_features = spider_cq(name, last_current_year + max_times, get_current_number(name), "predict", windows_size)
# time.sleep(np.random.random(1).tolist()[0])
max_times -= 1
return predict_features
return predict_features
def get_red_ball_predict_result(predict_features, sequence_len, windows_size):
""" 获取红球预测结果
"""
name_list = [(ball_name[0], i + 1) for i in range(sequence_len)]
if mini_args.name not in ["pls", "qxc", "sd"]:
hotfixed = 1
else:
hotfixed = 0
data = predict_features[["{}_{}".format(name[0], i) for name, i in name_list]].values.astype(int) - hotfixed
with red_graph.as_default():
reverse_sequence = tf.compat.v1.get_default_graph().get_tensor_by_name(pred_key_d[ball_name[0][0]])
pred = red_sess.run(reverse_sequence, feed_dict={
"inputs:0": data.reshape(1, windows_size, sequence_len),
"sequence_length:0": np.array([sequence_len] * 1)
})
return pred, name_list
def get_blue_ball_predict_result(name, predict_features, sequence_len, windows_size):
""" 获取蓝球预测结果
"""
if name == "ssq":
data = predict_features[[ball_name[1][0]]].values.astype(int) - 1
with blue_graph.as_default():
softmax = tf.compat.v1.get_default_graph().get_tensor_by_name(pred_key_d[ball_name[1][0]])
pred = blue_sess.run(softmax, feed_dict={
"inputs:0": data.reshape(1, windows_size)
})
return pred
else:
name_list = [(ball_name[1], i + 1) for i in range(sequence_len)]
data = predict_features[["{}_{}".format(name[0], i) for name, i in name_list]].values.astype(int) - 1
with blue_graph.as_default():
reverse_sequence = tf.compat.v1.get_default_graph().get_tensor_by_name(pred_key_d[ball_name[1][0]])
pred = blue_sess.run(reverse_sequence, feed_dict={
"inputs:0": data.reshape(1, windows_size, sequence_len),
"sequence_length:0": np.array([sequence_len] * 1)
})
return pred, name_list
def get_final_result(name, predict_features, mode=0):
"""" 最终预测函数
"""
m_args = model_args[name]["model_args"]
if name == "ssq":
red_pred, red_name_list = get_red_ball_predict_result(predict_features, m_args["sequence_len"], m_args["windows_size"])
blue_pred = get_blue_ball_predict_result(name, predict_features, 0, m_args["windows_size"])
ball_name_list = ["{}_{}".format(name[mode], i) for name, i in red_name_list] + [ball_name[1][mode]]
pred_result_list = red_pred[0].tolist() + blue_pred.tolist()
return {
b_name: int(res) + 1 for b_name, res in zip(ball_name_list, pred_result_list)
}
elif name == "dlt":
red_pred, red_name_list = get_red_ball_predict_result(predict_features, m_args["red_sequence_len"], m_args["windows_size"])
blue_pred, blue_name_list = get_blue_ball_predict_result(name, predict_features, m_args["blue_sequence_len"], m_args["windows_size"])
ball_name_list = ["{}_{}".format(name[mode], i) for name, i in red_name_list] + ["{}_{}".format(name[mode], i) for name, i in blue_name_list]
pred_result_list = red_pred[0].tolist() + blue_pred[0].tolist()
return {
b_name: int(res) + 1 for b_name, res in zip(ball_name_list, pred_result_list)
}
elif name in ["pls", "qxc", "sd"]:
red_pred, red_name_list = get_red_ball_predict_result(predict_features, m_args["red_sequence_len"], m_args["windows_size"])
ball_name_list = ["{}_{}".format(name[mode], i) for name, i in red_name_list]
pred_result_list = red_pred[0].tolist()
return {
b_name: int(res) for b_name, res in zip(ball_name_list, pred_result_list)
}
elif name == "kl8":
red_pred, red_name_list = get_red_ball_predict_result(predict_features, m_args["red_sequence_len"], m_args["windows_size"])
ball_name_list = ["{}_{}".format(name[mode], i) for name, i in red_name_list]
pred_result_list = red_pred[0].tolist()
return {
b_name: int(res) + 1 for b_name, res in zip(ball_name_list, pred_result_list)
}
def predict_run(name):
global filedata, filetitle
windows_size = model_args[name]["model_args"]["windows_size"]
diff_number = windows_size - 1
current_number = get_current_number(mini_args.name)
if mini_args.cq == 0:
data = spider(name, str(int(current_number) - diff_number), current_number, "predict", windows_size)
else:
data = spider_cq(name, str(int(current_number) - diff_number), current_number, "predict", windows_size)
if data is None or len(data) <= 0:
logger.info("【{}】预测期号:{} 窗口大小:{} 数据为空, 请检查数据文件是否存在,或训练与预测参数是否匹配".format(name_path[name]["name"], int(current_number) + 1, windows_size))
exit(0)
logger.info("【{}】预测期号:{} 窗口大小:{}".format(name_path[name]["name"], int(current_number) + 1, windows_size))
predict_features_ = try_error(name, data, windows_size)
# logger.info("预测结果:{}".format(get_final_result(name, predict_features_)))
predict_dict = get_final_result(name, predict_features_)
ans = ""
_data = []
_title = []
for item in predict_dict:
if (item == "红球_1" or item == "红球"):
ans += "红球:"
if (item == "蓝球_1" or item == "蓝球"):
ans += "蓝球:"
ans += str(predict_dict[item]) + " "
_data.append(int(predict_dict[item]))
_title.append(item)
logger.info("预测结果:{}".format(ans))
filedata.append(_data.copy())
filetitle = _title.copy()
return filedata, filetitle
# if __name__ == "__main__":
# spider_cq("kl8", "20180101", "20180110", "train")