-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgreek_letters.py
202 lines (156 loc) · 5.86 KB
/
greek_letters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Kevin Heleodoro - Use the MNIST trained network to recognize Greek letters
# ----- Import Statements -------- #
import torch
import torchvision
import torch.nn.functional as F
import matplotlib.pyplot as plt
from main import MyNetwork, print_border
# ----- Global Variables --------- #
learning_rate = 0.1
momentum = 0.8
n_epochs = 8
# ----- Class Definitions -------- #
# Greek dataset transform
class GreekTransform:
def __init__(self):
pass
def __call__(self, x):
x = torchvision.transforms.functional.rgb_to_grayscale(x)
x = torchvision.transforms.functional.affine(x, 0, (0, 0), 36 / 128, 0)
x = torchvision.transforms.functional.center_crop(x, (28, 28))
return torchvision.transforms.functional.invert(x)
# ----- Function Definitions ----- #
# Load the Greek letters dataset
def load_greek_data(directory):
print(f"Loading Greek letters from {directory}...")
mnist_mean = 0.1307
mnist_standard_deviation = 0.3081
greek_data = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(
directory,
transform=torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
GreekTransform(),
torchvision.transforms.Normalize(
(mnist_mean,), (mnist_standard_deviation,)
),
]
),
),
batch_size=5,
shuffle=True,
)
return greek_data
# Train the network
def train_network(
network, optimizer, train_dataloader, train_losses, train_counter, epoch
):
network.train()
log_interval = 1
for batch_idx, (data, target) in enumerate(train_dataloader):
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print(
f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_dataloader.dataset)} "
f"({100. * batch_idx / len(train_dataloader):.0f}%)]\tLoss: {loss.item():.6f}"
)
train_losses.append(loss.item())
count = (epoch - 1) * len(train_dataloader.dataset) + batch_idx * len(data)
train_counter.append(
count
# (batch_idx * 64) + ((epoch - 1) * len(train_dataloader.dataset))
)
print("Training complete")
def test_network(network, test_dataloader, test_losses):
network.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_dataloader:
output = network(data)
test_loss += F.nll_loss(output, target, reduction="sum").item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_dataloader.dataset)
test_losses.append(test_loss)
print(
f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_dataloader.dataset)} "
f"({100. * correct / len(test_dataloader.dataset):.2f}%)\n"
)
# Plot the training curve
def plt_training_curve(
train_losses, train_counter, test_losses, test_counter, n_epochs
):
print_border()
print("Plotting the training curve...")
print("Train Counter: ", len(train_counter))
print("Train Losses: ", len(train_losses))
print("Test Counter: ", len(test_counter))
print("Test Losses: ", len(test_losses))
fig = plt.figure()
plt.plot(train_counter, train_losses, color="pink")
plt.scatter(test_counter, test_losses, color="green")
plt.legend(["Train Loss", "Test Loss"], loc="upper right")
plt.xlabel("number of training examples seen")
plt.ylabel("negative log likelihood loss")
plt.title("MNIST CNN Training Curve")
plt.tight_layout()
plt.savefig("results/main/task_3/greek_training_curve.png")
print("Training curve plotted successfully")
# ----- Main Code ---------------- #
# Use the trained network to recognize Greek letters
def main():
print_border()
print("Greek Letter Recognition")
# Load the trained model
print_border()
print("Loading the trained model...")
network = MyNetwork()
model_path = "results/main/mnist_model.pth"
network.load_state_dict(torch.load(model_path))
print(f"Before: {network}")
# Freeze network weights
print_border()
print("Freezing the network weights...")
for param in network.parameters():
param.requires_grad = False
# Replace the last layer
print_border()
print("Replacing the last layer with a new layer with three nodes...")
in_features = network.fc2.in_features
network.fc2 = torch.nn.Linear(in_features, 3)
network.fc2.requires_grad = True
print(f"After: {network}")
# Load the Greek letters dataset
print_border()
print("Loading the Greek letters dataset...")
greek_train_dir = "data/greek_train"
greek_train = load_greek_data(greek_train_dir)
greek_test_dir = "data/greek_test"
greek_test = load_greek_data(greek_test_dir)
# Train the network
print_border()
print("Training the network...")
train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(greek_test.dataset) for i in range(n_epochs + 1)]
optimizer = torch.optim.SGD(
network.fc2.parameters(), lr=learning_rate, momentum=momentum
)
print("Running pre-training test...")
test_network(network, greek_test, test_losses)
for epoch in range(1, n_epochs + 1):
train_network(
network, optimizer, greek_train, train_losses, train_counter, epoch
)
test_network(network, greek_test, test_losses)
# Plot the training curve
plt_training_curve(train_losses, train_counter, test_losses, test_counter, n_epochs)
if __name__ == "__main__":
main()