-
Notifications
You must be signed in to change notification settings - Fork 221
/
Copy path0069607b-aa90-49fd-9766-4368bcd168c4.txt
2133 lines (2066 loc) · 106 KB
/
0069607b-aa90-49fd-9766-4368bcd168c4.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import time
from dataclasses import dataclass
from pathlib import Path
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import BlockMask, flex_attention
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
self.num_process = int(os.environ['WORLD_SIZE'])
self.rank = int(os.environ["RANK"])
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
params: "list[torch.Tensor]" = list(params)
assert all(isinstance(p, torch.Tensor) for p in params)
sizes = {p.numel() for p in params}
param_groups = [
{
"params": [p for p in params if p.numel() == size],
"update_buffer": [
torch.empty(size, device="cuda", dtype=torch.bfloat16)
for _ in range(self.num_process)
],
}
for size in sizes
]
super().__init__(param_groups, defaults)
def step(self):
for group in self.param_groups:
lr: float = group["lr"]
momentum: float = group["momentum"]
nesterov: bool = group["nesterov"]
zeropower_backend = zeropower_backends[group["backend"]]
backend_steps: int = group["backend_steps"]
update_buffers: "list[torch.Tensor]" = group["update_buffer"]
# generate weight updates in distributed fashion
params: "list[torch.Tensor]" = group["params"]
assert len(params) % self.num_process == 0
handle = None
params_world = None
def update_prev():
if params_world is None:
return
assert handle is not None
handle.wait()
for p_world, g_world in zip(params_world, update_buffers):
p_world.data.add_(
g_world.view_as(p_world),
alpha=-lr * max(1, p_world.size(0) / p_world.size(1)) ** 0.5,
)
for base_i in range(len(params))[::self.num_process]:
p = params[base_i + self.rank]
g = p.grad
assert g is not None
state = self.state[p]
if "momentum_buffer" not in state:
state["momentum_buffer"] = torch.zeros_like(g)
buf: torch.Tensor = state["momentum_buffer"]
buf.lerp_(g, 1 - momentum)
g = g.lerp_(buf, momentum) if nesterov else buf
g = zeropower_backend(g, steps=backend_steps).flatten()
update_prev()
handle = dist.all_gather(update_buffers, g, async_op=True)
params_world = params[base_i : base_i + self.num_process]
update_prev()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5])) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x: torch.Tensor, vi: torch.Tensor, block_mask: BlockMask) -> torch.Tensor:
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q: torch.Tensor = self.c_q(x).view(B, T, self.n_head, -1)
k: torch.Tensor = self.c_k(x).view(B, T, self.n_head, -1)
v: torch.Tensor = self.c_v(x).view(B, T, self.n_head, -1)
v = self.lambdas[0] * v + self.lambdas[1] * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x: torch.Tensor, vi: torch.Tensor, x0: torch.Tensor, block_mask: BlockMask) -> torch.Tensor:
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
lm_head_softcap : int = 30
class GPT(nn.Module):
def __init__(self, config: GPTConfig):
super().__init__()
self.n_layer = config.n_layer
self.lm_head_softcap = config.lm_head_softcap
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
# U-net structure on token value embeddings by @leloykun
vte = nn.Embedding(config.vocab_size, config.n_embd*self.num_encoder_layers),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx: torch.Tensor, target: torch.Tensor, sliding_window: torch.Tensor) -> torch.Tensor:
BLOCK_SIZE = 128
assert idx.ndim == 1
docs = (idx == 50256).cumsum(0)
docs_low = docs.reshape(-1, BLOCK_SIZE)[:, 0].contiguous()
docs_high = docs.reshape(-1, BLOCK_SIZE)[:, -1].contiguous()
def document_sliding_window_causal(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < sliding_window
return causal_mask & document_mask & window_mask
S = len(idx)
def create_sliding_window_causal_mask(S: int, sliding_window: torch.Tensor):
kv_idx = block_idx = torch.arange(S // BLOCK_SIZE, dtype=torch.int32, device="cuda")
q_idx = block_idx[:, None]
causal_mask = q_idx >= kv_idx
document_mask = (docs_low[q_idx] <= docs_high[kv_idx]) & (docs_low[kv_idx] <= docs_high[q_idx])
window_mask = q_idx - kv_idx < ((sliding_window + BLOCK_SIZE - 1) // BLOCK_SIZE)
dense_mask = causal_mask & document_mask & window_mask
dense_mask = dense_mask.to(torch.int32)
num_blocks = dense_mask.sum(dim=-1).to(torch.int32)
indices = torch.argsort(dense_mask, dim=-1, descending=True, stable=True).to(torch.int32)
num_blocks = num_blocks[None, None, :].contiguous()
indices = indices[None, None, :].contiguous()
return BlockMask.from_kv_blocks(num_blocks, indices, BLOCK_SIZE=BLOCK_SIZE, mask_mod=document_sliding_window_causal)
block_mask = create_sliding_window_causal_mask(S, sliding_window)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(self.num_encoder_layers, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
# U-net structure on token value embeddings by @leloykun
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers-1-i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = self.lm_head_softcap * torch.tanh(logits / self.lm_head_softcap) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(file: Path):
# only reads the header, returns header data
# header is 256 int32
header = torch.from_file(f"{file}", False, 256, dtype=torch.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
return int(header[2]) # number of tokens (claimed)
def _load_data_shard(file: Path, ntok: int):
with file.open("rb") as f:
tokens = torch.empty(ntok, dtype=torch.uint16, pin_memory=True)
f.seek(256 * 4)
nbytes = f.readinto(tokens.numpy())
assert nbytes == 2 * ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(Path.cwd().glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
self.ntoks = [_peek_data_shard(file) for file in self.files]
assert min(self.ntoks) >= num_processes * T + 1
self.ntok_total = sum(self.ntoks)
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard], self.ntoks[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
# host side async is sufficient;
# no performance improvement was observed when introducing a separate stream.
x = buf[:-1].to(device="cuda", dtype=torch.int32, non_blocking=True) # inputs
y = buf[1:].to(device="cuda", dtype=torch.int64, non_blocking=True) # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size + 1 >= len(self.tokens):
self.advance()
return x, y
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1480 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
# os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
assert train_accumulation_steps == 1
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True)
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
sliding_window_size = torch.tensor(64, dtype=torch.int32, device="cuda")
sw_size_prev = 64
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.perf_counter()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.perf_counter()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the sliding window size for the current step, in chunks of 64. By @fernbear.bsky.social
sw_size = 64 * int((64 + (1792 - 64) * step / args.num_iterations) // 64)
if sw_size != sw_size_prev:
sliding_window_size.copy_(sw_size, non_blocking=True)
sw_size_prev = sw_size
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.perf_counter() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, sliding_window=sliding_window_size)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.perf_counter()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.perf_counter() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
# torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.perf_counter()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
loss = model(x, y, sliding_window=sliding_window_size)
loss.backward()
del loss
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# momentum warmup for Muon
frac = min(step/300, 1)
for group in optimizer3.param_groups:
group['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
approx_time = training_time_ms + 1000 * (time.perf_counter() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Sun Dec 8 12:24:25 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.129.03 Driver Version: 535.129.03 CUDA Version: 12.6 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:65:02.0 Off | 0 |
| N/A 36C P0 74W / 700W | 7MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:67:02.0 Off | 0 |
| N/A 45C P0 128W / 700W | 533MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:69:02.0 Off | 0 |
| N/A 45C P0 123W / 700W | 533MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:6B:02.0 Off | 0 |
| N/A 39C P0 114W / 700W | 533MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:6F:02.0 Off | 0 |
| N/A 38C P0 117W / 700W | 533MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:71:02.0 Off | 0 |
| N/A 44C P0 121W / 700W | 533MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:73:02.0 Off | 0 |
| N/A 45C P0 126W / 700W | 533MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:75:02.0 Off | 0 |
| N/A 38C P0 123W / 700W | 533MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 3200000000 across 32 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1480 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1480 train_time:23764ms step_avg:nanms
step:2/1480 train_time:23887ms step_avg:nanms
step:3/1480 train_time:24025ms step_avg:nanms
step:4/1480 train_time:24167ms step_avg:nanms
step:5/1480 train_time:24307ms step_avg:nanms
step:6/1480 train_time:24448ms step_avg:nanms
step:7/1480 train_time:24589ms step_avg:nanms
step:8/1480 train_time:24731ms step_avg:nanms
step:9/1480 train_time:24877ms step_avg:nanms
step:10/1480 train_time:25020ms step_avg:nanms
step:11/1480 train_time:143ms step_avg:nanms
step:12/1480 train_time:285ms step_avg:nanms
step:13/1480 train_time:427ms step_avg:142.18ms
step:14/1480 train_time:567ms step_avg:141.70ms
step:15/1480 train_time:708ms step_avg:141.61ms
step:16/1480 train_time:852ms step_avg:142.01ms
step:17/1480 train_time:996ms step_avg:142.34ms
step:18/1480 train_time:1141ms step_avg:142.57ms
step:19/1480 train_time:1284ms step_avg:142.64ms
step:20/1480 train_time:1426ms step_avg:142.59ms
step:21/1480 train_time:1567ms step_avg:142.45ms
step:22/1480 train_time:1708ms step_avg:142.30ms
step:23/1480 train_time:1852ms step_avg:142.46ms
step:24/1480 train_time:1996ms step_avg:142.54ms
step:25/1480 train_time:2140ms step_avg:142.69ms
step:26/1480 train_time:2283ms step_avg:142.69ms
step:27/1480 train_time:2425ms step_avg:142.68ms
step:28/1480 train_time:2567ms step_avg:142.61ms
step:29/1480 train_time:2707ms step_avg:142.47ms
step:30/1480 train_time:2851ms step_avg:142.53ms
step:31/1480 train_time:2994ms step_avg:142.58ms
step:32/1480 train_time:3137ms step_avg:142.58ms
step:33/1480 train_time:3280ms step_avg:142.63ms
step:34/1480 train_time:3424ms step_avg:142.67ms
step:35/1480 train_time:3566ms step_avg:142.65ms
step:36/1480 train_time:3707ms step_avg:142.58ms
step:37/1480 train_time:3851ms step_avg:142.62ms
step:38/1480 train_time:3994ms step_avg:142.63ms
step:39/1480 train_time:4136ms step_avg:142.63ms
step:40/1480 train_time:4281ms step_avg:142.70ms
step:41/1480 train_time:4425ms step_avg:142.74ms
step:42/1480 train_time:4568ms step_avg:142.75ms
step:43/1480 train_time:4709ms step_avg:142.70ms
step:44/1480 train_time:4852ms step_avg:142.70ms
step:45/1480 train_time:4994ms step_avg:142.69ms
step:46/1480 train_time:5136ms step_avg:142.68ms
step:47/1480 train_time:5281ms step_avg:142.72ms
step:48/1480 train_time:5426ms step_avg:142.78ms
step:49/1480 train_time:5568ms step_avg:142.77ms
step:50/1480 train_time:5710ms step_avg:142.75ms
step:51/1480 train_time:5853ms step_avg:142.76ms
step:52/1480 train_time:5995ms step_avg:142.74ms
step:53/1480 train_time:6137ms step_avg:142.73ms
step:54/1480 train_time:6279ms step_avg:142.72ms
step:55/1480 train_time:6424ms step_avg:142.75ms
step:56/1480 train_time:6568ms step_avg:142.78ms
step:57/1480 train_time:6709ms step_avg:142.75ms
step:58/1480 train_time:6853ms step_avg:142.77ms
step:59/1480 train_time:6997ms step_avg:142.80ms
step:60/1480 train_time:7141ms step_avg:142.82ms
step:61/1480 train_time:7284ms step_avg:142.83ms
step:62/1480 train_time:7427ms step_avg:142.82ms
step:63/1480 train_time:7568ms step_avg:142.79ms
step:64/1480 train_time:7710ms step_avg:142.77ms
step:65/1480 train_time:7853ms step_avg:142.77ms
step:66/1480 train_time:7995ms step_avg:142.77ms
step:67/1480 train_time:8139ms step_avg:142.79ms
step:68/1480 train_time:8282ms step_avg:142.79ms
step:69/1480 train_time:8425ms step_avg:142.80ms
step:70/1480 train_time:8568ms step_avg:142.80ms
step:71/1480 train_time:8710ms step_avg:142.79ms
step:72/1480 train_time:8854ms step_avg:142.80ms
step:73/1480 train_time:8996ms step_avg:142.79ms
step:74/1480 train_time:9140ms step_avg:142.82ms
step:75/1480 train_time:9284ms step_avg:142.83ms
step:76/1480 train_time:9426ms step_avg:142.82ms
step:77/1480 train_time:9568ms step_avg:142.81ms
step:78/1480 train_time:9710ms step_avg:142.79ms
step:79/1480 train_time:9853ms step_avg:142.80ms
step:80/1480 train_time:9996ms step_avg:142.80ms
step:81/1480 train_time:10140ms step_avg:142.82ms
step:82/1480 train_time:10283ms step_avg:142.82ms
step:83/1480 train_time:10426ms step_avg:142.82ms
step:84/1480 train_time:10567ms step_avg:142.80ms
step:85/1480 train_time:10709ms step_avg:142.79ms
step:86/1480 train_time:10851ms step_avg:142.78ms
step:87/1480 train_time:10993ms step_avg:142.77ms
step:88/1480 train_time:11135ms step_avg:142.75ms
step:89/1480 train_time:11278ms step_avg:142.75ms
step:90/1480 train_time:11423ms step_avg:142.78ms
step:91/1480 train_time:11565ms step_avg:142.78ms
step:92/1480 train_time:11708ms step_avg:142.78ms
step:93/1480 train_time:11850ms step_avg:142.77ms
step:94/1480 train_time:11993ms step_avg:142.77ms
step:95/1480 train_time:12134ms step_avg:142.75ms
step:96/1480 train_time:12276ms step_avg:142.74ms
step:97/1480 train_time:12420ms step_avg:142.76ms
step:98/1480 train_time:12564ms step_avg:142.78ms
step:99/1480 train_time:12706ms step_avg:142.76ms
step:100/1480 train_time:12850ms step_avg:142.77ms
step:101/1480 train_time:12991ms step_avg:142.75ms
step:102/1480 train_time:13132ms step_avg:142.74ms
step:103/1480 train_time:13274ms step_avg:142.73ms
step:104/1480 train_time:13419ms step_avg:142.76ms
step:105/1480 train_time:13563ms step_avg:142.77ms
step:106/1480 train_time:13706ms step_avg:142.78ms
step:107/1480 train_time:13849ms step_avg:142.78ms
step:108/1480 train_time:13990ms step_avg:142.76ms
step:109/1480 train_time:14132ms step_avg:142.75ms
step:110/1480 train_time:14273ms step_avg:142.73ms
step:111/1480 train_time:14420ms step_avg:142.78ms
step:112/1480 train_time:14568ms step_avg:142.82ms
step:113/1480 train_time:14716ms step_avg:142.87ms
step:114/1480 train_time:14864ms step_avg:142.92ms
step:115/1480 train_time:15011ms step_avg:142.96ms
step:116/1480 train_time:15159ms step_avg:143.01ms
step:117/1480 train_time:15306ms step_avg:143.04ms
step:118/1480 train_time:15452ms step_avg:143.08ms
step:119/1480 train_time:15599ms step_avg:143.11ms
step:120/1480 train_time:15747ms step_avg:143.16ms
step:121/1480 train_time:15893ms step_avg:143.18ms
step:122/1480 train_time:16041ms step_avg:143.22ms
step:123/1480 train_time:16188ms step_avg:143.26ms
step:124/1480 train_time:16334ms step_avg:143.28ms
step:125/1480 train_time:16482ms step_avg:143.32ms
step:125/1480 val_loss:4.4041 train_time:16539ms step_avg:143.82ms
step:126/1480 train_time:16635ms step_avg:143.40ms
step:127/1480 train_time:16783ms step_avg:143.44ms
step:128/1480 train_time:16931ms step_avg:143.48ms
step:129/1480 train_time:17077ms step_avg:143.50ms
step:130/1480 train_time:17223ms step_avg:143.53ms
step:131/1480 train_time:17369ms step_avg:143.55ms
step:132/1480 train_time:17515ms step_avg:143.57ms
step:133/1480 train_time:17666ms step_avg:143.62ms
step:134/1480 train_time:17813ms step_avg:143.65ms
step:135/1480 train_time:17959ms step_avg:143.67ms
step:136/1480 train_time:18106ms step_avg:143.70ms
step:137/1480 train_time:18253ms step_avg:143.72ms
step:138/1480 train_time:18398ms step_avg:143.73ms
step:139/1480 train_time:18546ms step_avg:143.77ms
step:140/1480 train_time:18694ms step_avg:143.80ms
step:141/1480 train_time:18841ms step_avg:143.82ms
step:142/1480 train_time:18989ms step_avg:143.85ms
step:143/1480 train_time:19135ms step_avg:143.87ms
step:144/1480 train_time:19284ms step_avg:143.91ms
step:145/1480 train_time:19429ms step_avg:143.92ms
step:146/1480 train_time:19575ms step_avg:143.94ms
step:147/1480 train_time:19724ms step_avg:143.97ms
step:148/1480 train_time:19871ms step_avg:143.99ms
step:149/1480 train_time:20016ms step_avg:144.00ms
step:150/1480 train_time:20163ms step_avg:144.02ms
step:151/1480 train_time:20310ms step_avg:144.04ms
step:152/1480 train_time:20456ms step_avg:144.06ms
step:153/1480 train_time:20602ms step_avg:144.07ms
step:154/1480 train_time:20750ms step_avg:144.10ms
step:155/1480 train_time:20896ms step_avg:144.11ms
step:156/1480 train_time:21043ms step_avg:144.13ms
step:157/1480 train_time:21193ms step_avg:144.17ms
step:158/1480 train_time:21337ms step_avg:144.17ms
step:159/1480 train_time:21485ms step_avg:144.20ms
step:160/1480 train_time:21631ms step_avg:144.21ms
step:161/1480 train_time:21778ms step_avg:144.23ms
step:162/1480 train_time:21925ms step_avg:144.24ms
step:163/1480 train_time:22072ms step_avg:144.26ms
step:164/1480 train_time:22217ms step_avg:144.27ms
step:165/1480 train_time:22366ms step_avg:144.29ms
step:166/1480 train_time:22512ms step_avg:144.31ms
step:167/1480 train_time:22659ms step_avg:144.32ms
step:168/1480 train_time:22806ms step_avg:144.34ms
step:169/1480 train_time:22952ms step_avg:144.35ms
step:170/1480 train_time:23098ms step_avg:144.36ms
step:171/1480 train_time:23245ms step_avg:144.38ms
step:172/1480 train_time:23393ms step_avg:144.40ms
step:173/1480 train_time:23540ms step_avg:144.41ms
step:174/1480 train_time:23686ms step_avg:144.43ms
step:175/1480 train_time:23832ms step_avg:144.44ms
step:176/1480 train_time:23980ms step_avg:144.46ms
step:177/1480 train_time:24126ms step_avg:144.47ms
step:178/1480 train_time:24273ms step_avg:144.48ms
step:179/1480 train_time:24418ms step_avg:144.48ms
step:180/1480 train_time:24565ms step_avg:144.50ms
step:181/1480 train_time:24712ms step_avg:144.51ms
step:182/1480 train_time:24858ms step_avg:144.52ms
step:183/1480 train_time:25005ms step_avg:144.54ms
step:184/1480 train_time:25153ms step_avg:144.56ms
step:185/1480 train_time:25300ms step_avg:144.57ms
step:186/1480 train_time:25447ms step_avg:144.58ms
step:187/1480 train_time:25593ms step_avg:144.60ms
step:188/1480 train_time:25741ms step_avg:144.61ms
step:189/1480 train_time:25888ms step_avg:144.63ms
step:190/1480 train_time:26034ms step_avg:144.63ms
step:191/1480 train_time:26181ms step_avg:144.64ms
step:192/1480 train_time:26327ms step_avg:144.66ms
step:193/1480 train_time:26474ms step_avg:144.67ms
step:194/1480 train_time:26620ms step_avg:144.67ms
step:195/1480 train_time:26767ms step_avg:144.69ms
step:196/1480 train_time:26913ms step_avg:144.69ms
step:197/1480 train_time:27061ms step_avg:144.71ms
step:198/1480 train_time:27207ms step_avg:144.72ms
step:199/1480 train_time:27354ms step_avg:144.73ms
step:200/1480 train_time:27501ms step_avg:144.74ms
step:201/1480 train_time:27648ms step_avg:144.75ms
step:202/1480 train_time:27794ms step_avg:144.76ms
step:203/1480 train_time:27940ms step_avg:144.77ms
step:204/1480 train_time:28087ms step_avg:144.78ms
step:205/1480 train_time:28234ms step_avg:144.79ms
step:206/1480 train_time:28379ms step_avg:144.79ms
step:207/1480 train_time:28527ms step_avg:144.80ms
step:208/1480 train_time:28674ms step_avg:144.82ms
step:209/1480 train_time:28820ms step_avg:144.82ms
step:210/1480 train_time:28967ms step_avg:144.83ms
step:211/1480 train_time:29113ms step_avg:144.84ms
step:212/1480 train_time:29260ms step_avg:144.85ms
step:213/1480 train_time:29407ms step_avg:144.86ms
step:214/1480 train_time:29554ms step_avg:144.87ms
step:215/1480 train_time:29700ms step_avg:144.88ms
step:216/1480 train_time:29848ms step_avg:144.89ms
step:217/1480 train_time:29994ms step_avg:144.90ms
step:218/1480 train_time:30141ms step_avg:144.91ms
step:219/1480 train_time:30290ms step_avg:144.93ms
step:220/1480 train_time:30435ms step_avg:144.93ms
step:221/1480 train_time:30584ms step_avg:144.95ms
step:222/1480 train_time:30734ms step_avg:144.97ms
step:223/1480 train_time:30883ms step_avg:144.99ms
step:224/1480 train_time:31033ms step_avg:145.01ms
step:225/1480 train_time:31184ms step_avg:145.04ms
step:226/1480 train_time:31333ms step_avg:145.06ms
step:227/1480 train_time:31484ms step_avg:145.09ms
step:228/1480 train_time:31634ms step_avg:145.11ms
step:229/1480 train_time:31786ms step_avg:145.14ms
step:230/1480 train_time:31936ms step_avg:145.16ms
step:231/1480 train_time:32087ms step_avg:145.19ms
step:232/1480 train_time:32237ms step_avg:145.21ms
step:233/1480 train_time:32387ms step_avg:145.23ms
step:234/1480 train_time:32539ms step_avg:145.26ms
step:235/1480 train_time:32690ms step_avg:145.29ms
step:236/1480 train_time:32839ms step_avg:145.30ms
step:237/1480 train_time:32989ms step_avg:145.33ms
step:238/1480 train_time:33139ms step_avg:145.35ms
step:239/1480 train_time:33290ms step_avg:145.37ms
step:240/1480 train_time:33438ms step_avg:145.38ms
step:241/1480 train_time:33590ms step_avg:145.41ms
step:242/1480 train_time:33740ms step_avg:145.43ms
step:243/1480 train_time:33891ms step_avg:145.45ms
step:244/1480 train_time:34041ms step_avg:145.47ms
step:245/1480 train_time:34192ms step_avg:145.50ms
step:246/1480 train_time:34342ms step_avg:145.52ms
step:247/1480 train_time:34491ms step_avg:145.53ms
step:248/1480 train_time:34641ms step_avg:145.55ms
step:249/1480 train_time:34791ms step_avg:145.57ms
step:250/1480 train_time:34942ms step_avg:145.59ms
step:250/1480 val_loss:3.9878 train_time:35000ms step_avg:145.84ms
step:251/1480 train_time:35098ms step_avg:145.64ms
step:252/1480 train_time:35248ms step_avg:145.65ms
step:253/1480 train_time:35398ms step_avg:145.67ms
step:254/1480 train_time:35547ms step_avg:145.69ms
step:255/1480 train_time:35697ms step_avg:145.70ms
step:256/1480 train_time:35846ms step_avg:145.71ms
step:257/1480 train_time:35996ms step_avg:145.73ms
step:258/1480 train_time:36147ms step_avg:145.76ms
step:259/1480 train_time:36299ms step_avg:145.78ms
step:260/1480 train_time:36450ms step_avg:145.80ms
step:261/1480 train_time:36600ms step_avg:145.82ms
step:262/1480 train_time:36749ms step_avg:145.83ms
step:263/1480 train_time:36900ms step_avg:145.85ms
step:264/1480 train_time:37050ms step_avg:145.86ms
step:265/1480 train_time:37204ms step_avg:145.90ms
step:266/1480 train_time:37352ms step_avg:145.91ms
step:267/1480 train_time:37503ms step_avg:145.93ms
step:268/1480 train_time:37652ms step_avg:145.94ms
step:269/1480 train_time:37803ms step_avg:145.96ms
step:270/1480 train_time:37951ms step_avg:145.96ms
step:271/1480 train_time:38101ms step_avg:145.98ms
step:272/1480 train_time:38251ms step_avg:146.00ms
step:273/1480 train_time:38404ms step_avg:146.02ms
step:274/1480 train_time:38553ms step_avg:146.03ms
step:275/1480 train_time:38704ms step_avg:146.05ms
step:276/1480 train_time:38855ms step_avg:146.07ms
step:277/1480 train_time:39006ms step_avg:146.09ms
step:278/1480 train_time:39155ms step_avg:146.10ms
step:279/1480 train_time:39308ms step_avg:146.13ms
step:280/1480 train_time:39457ms step_avg:146.14ms
step:281/1480 train_time:39607ms step_avg:146.15ms
step:282/1480 train_time:39758ms step_avg:146.17ms
step:283/1480 train_time:39909ms step_avg:146.19ms
step:284/1480 train_time:40061ms step_avg:146.21ms
step:285/1480 train_time:40211ms step_avg:146.22ms
step:286/1480 train_time:40362ms step_avg:146.24ms
step:287/1480 train_time:40512ms step_avg:146.25ms
step:288/1480 train_time:40663ms step_avg:146.27ms
step:289/1480 train_time:40813ms step_avg:146.28ms
step:290/1480 train_time:40964ms step_avg:146.30ms
step:291/1480 train_time:41115ms step_avg:146.32ms
step:292/1480 train_time:41266ms step_avg:146.33ms
step:293/1480 train_time:41416ms step_avg:146.35ms
step:294/1480 train_time:41567ms step_avg:146.36ms
step:295/1480 train_time:41715ms step_avg:146.37ms
step:296/1480 train_time:41866ms step_avg:146.39ms
step:297/1480 train_time:42016ms step_avg:146.40ms
step:298/1480 train_time:42167ms step_avg:146.41ms
step:299/1480 train_time:42317ms step_avg:146.43ms
step:300/1480 train_time:42469ms step_avg:146.44ms
step:301/1480 train_time:42619ms step_avg:146.46ms
step:302/1480 train_time:42768ms step_avg:146.47ms
step:303/1480 train_time:42918ms step_avg:146.48ms
step:304/1480 train_time:43069ms step_avg:146.49ms
step:305/1480 train_time:43220ms step_avg:146.51ms
step:306/1480 train_time:43370ms step_avg:146.52ms
step:307/1480 train_time:43521ms step_avg:146.54ms
step:308/1480 train_time:43672ms step_avg:146.55ms
step:309/1480 train_time:43822ms step_avg:146.56ms
step:310/1480 train_time:43972ms step_avg:146.57ms
step:311/1480 train_time:44122ms step_avg:146.59ms
step:312/1480 train_time:44274ms step_avg:146.60ms
step:313/1480 train_time:44424ms step_avg:146.61ms
step:314/1480 train_time:44573ms step_avg:146.62ms
step:315/1480 train_time:44724ms step_avg:146.64ms
step:316/1480 train_time:44873ms step_avg:146.64ms
step:317/1480 train_time:45024ms step_avg:146.66ms
step:318/1480 train_time:45174ms step_avg:146.67ms
step:319/1480 train_time:45325ms step_avg:146.68ms
step:320/1480 train_time:45476ms step_avg:146.70ms
step:321/1480 train_time:45627ms step_avg:146.71ms
step:322/1480 train_time:45779ms step_avg:146.73ms
step:323/1480 train_time:45929ms step_avg:146.74ms
step:324/1480 train_time:46081ms step_avg:146.75ms
step:325/1480 train_time:46231ms step_avg:146.77ms
step:326/1480 train_time:46382ms step_avg:146.78ms
step:327/1480 train_time:46531ms step_avg:146.79ms
step:328/1480 train_time:46682ms step_avg:146.80ms
step:329/1480 train_time:46833ms step_avg:146.81ms
step:330/1480 train_time:46985ms step_avg:146.83ms
step:331/1480 train_time:47138ms step_avg:146.85ms
step:332/1480 train_time:47291ms step_avg:146.87ms
step:333/1480 train_time:47443ms step_avg:146.88ms
step:334/1480 train_time:47597ms step_avg:146.90ms
step:335/1480 train_time:47750ms step_avg:146.92ms
step:336/1480 train_time:47905ms step_avg:146.95ms
step:337/1480 train_time:48060ms step_avg:146.97ms
step:338/1480 train_time:48213ms step_avg:146.99ms
step:339/1480 train_time:48366ms step_avg:147.01ms
step:340/1480 train_time:48521ms step_avg:147.03ms
step:341/1480 train_time:48675ms step_avg:147.05ms
step:342/1480 train_time:48827ms step_avg:147.07ms
step:343/1480 train_time:48982ms step_avg:147.09ms
step:344/1480 train_time:49136ms step_avg:147.12ms
step:345/1480 train_time:49290ms step_avg:147.14ms
step:346/1480 train_time:49444ms step_avg:147.16ms
step:347/1480 train_time:49599ms step_avg:147.18ms
step:348/1480 train_time:49752ms step_avg:147.20ms
step:349/1480 train_time:49906ms step_avg:147.22ms
step:350/1480 train_time:50060ms step_avg:147.23ms
step:351/1480 train_time:50213ms step_avg:147.25ms
step:352/1480 train_time:50367ms step_avg:147.27ms
step:353/1480 train_time:50521ms step_avg:147.29ms
step:354/1480 train_time:50676ms step_avg:147.31ms
step:355/1480 train_time:50829ms step_avg:147.33ms
step:356/1480 train_time:50983ms step_avg:147.35ms
step:357/1480 train_time:51138ms step_avg:147.37ms