forked from ericlavigne/CarND-Detect-Lane-Lines-And-Vehicles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
529 lines (469 loc) · 21.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import cv2
from glob import glob
import numpy as np
from keras.layers.convolutional import Convolution2D
from keras.layers.core import Activation, Dropout
from keras.layers.normalization import BatchNormalization
from keras.models import Sequential, model_from_json
from keras.regularizers import l2
from moviepy.editor import VideoFileClip
import tensorflow as tf
def read_image(path):
"""Ensure images read in RGB format for consistency with moviepy"""
return cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
def write_image(path,img):
"""Handles RGB or grayscale images"""
if len(img.shape) == 3 and img.shape[2] == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(path, img)
def calibrate_chessboard():
"""Perform calibration using chessboard images"""
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
calibration_fnames = glob('camera_cal/calibration*.jpg')
calibration_images = []
objpoints = []
imgpoints = []
for fname in calibration_fnames:
img = read_image(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
calibration_images.append(gray)
ret, corners = cv2.findChessboardCorners(gray, (9,6), None)
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints,
calibration_images[0].shape[::-1], None, None)
calibration = [mtx,dist]
return calibration
def transform_image_files(transformation, src_pattern, dst_dir):
"""Concise testing for image transformation functions"""
src_fpaths = glob(src_pattern)
for src_fpath in src_fpaths:
img = read_image(src_fpath)
dst_img = transformation(img)
fname = src_fpath.split('/')[-1]
dst_fpath = dst_dir + '/' + fname
write_image(dst_fpath,dst_img)
def undistort(img, calibration):
"""Use calibration to correct image distortions"""
return cv2.undistort(img, calibration[0], calibration[1], None, calibration[0])
def undistort_files(calibration, src_pattern, dst_dir):
"""Test image distortion correction on test files"""
transform_image_files((lambda x: undistort(x, calibration)), src_pattern, dst_dir)
original_max_x = 1280
original_max_y = 720
lane_settings = {'name': 'lanes',
'presence_weight': 50.0, 'threshold': 0.5,
'original_max_x': 1280, 'original_max_y': 720,
'crop_min_x': 200, 'crop_max_x': 1080,
'crop_min_y': 420, 'crop_max_y': 666,
'scale_factor': 2}
car_settings = {'name': 'cars',
'presence_weight': 50.0, 'threshold': 0.5,
'original_max_x': 1280, 'original_max_y': 720,
'crop_min_x': 0, 'crop_max_x': 1280,
'crop_min_y': 420, 'crop_max_y': 666,
'scale_factor': 2}
def read_training_data_paths():
"""Returns {'x': [path1, path2, ...], 'lanes': [path1, path2, ...], 'cars': [path1, path2, ...]}"""
x = glob('training/*_x.png')
lanes = glob('training/*_lanes.png')
cars = glob('training/*_cars.png')
x.sort()
lanes.sort()
cars.sort()
assert (len(x) == len(lanes)), "x and lanes files don't match"
assert (len(x) == len(cars)), "x and cars files don't match"
return {'x': x, 'lanes': lanes, 'cars': cars}
def read_training_file(fpath,opt):
"""Read (car or lane) annotation file and convert to y format: one channel with
1 for present or 0 for absent"""
img = read_image(fpath)
img = crop_scale_white_balance(img,opt)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
normalized = np.zeros_like(img)
normalized[img > 0] = 1
return np.stack([normalized], axis=-1)
def crop(img,opt):
return img[opt['crop_min_y']:opt['crop_max_y'], opt['crop_min_x']:opt['crop_max_x']]
def uncrop(img,opt):
target_shape = (opt['original_max_y'],opt['original_max_x'], 3)
frame = np.zeros(target_shape, dtype="uint8")
frame[opt['crop_min_y']:opt['crop_max_y'], opt['crop_min_x']:opt['crop_max_x'], 0:3] = img
img = frame
return img
def scale_white_balance(img,opt):
img = cv2.resize(img, None, fx=(1.0/opt['scale_factor']), fy=(1.0/opt['scale_factor']),
interpolation=cv2.INTER_AREA)
low = np.amin(img)
high = np.amax(img)
img = (((img - low + 1.0) * 252.0 / (high - low)) - 0.5).astype(np.uint8)
return img
def unscale(img,opt):
img = cv2.resize(img, None, fx=opt['scale_factor'], fy=opt['scale_factor'])
if len(img.shape) == 2:
img = cv2.merge((img,img,img))
return img
def crop_scale_white_balance(img,opt):
img = crop(img,opt)
img = scale_white_balance(img,opt)
return img
def uncrop_scale(img,opt):
img = unscale(img,opt)
img = uncrop(img,opt)
return img
def preprocess_input_image(img,opt):
img = crop_scale_white_balance(img,opt)
img = cv2.GaussianBlur(img, (3,3), 0)
return ((img / 253.0) - 0.5).astype(np.float32)
def read_training_data(opt):
"""Returns tuple of input matrix and output matrix (X,y)"""
paths = read_training_data_paths()
X = []
for x in paths['x']:
X.append(preprocess_input_image(read_image(x), opt))
Y = []
for y in paths[opt['name']]:
Y.append(read_training_file(y,opt))
return {'x': np.stack(X), 'y': np.stack(Y)}
def weighted_binary_crossentropy(weight):
"""Higher weights increase the importance of examples in which
the correct answer is 1. Higher values should be used when
1 is a rare answer. Lower values should be used when 0 is
a rare answer."""
return (lambda y_true, y_pred: tf.nn.weighted_cross_entropy_with_logits(y_true, y_pred, weight))
def compile_model(model,opt):
"""Would be part of create_model, except that same settings
also need to be applied when loading model from file."""
model.compile(optimizer='adam',
loss=weighted_binary_crossentropy(opt['presence_weight']),
metrics=['binary_accuracy', 'binary_crossentropy'])
tf_pos_tanh_offset = tf.constant(0.5)
tf_pos_tanh_scale = tf.constant(0.45)
def tanh_zero_to_one(x):
"""Actually [0.05, 0.95] to avoid divide by zero errors"""
return (tf.tanh(x) * tf_pos_tanh_scale) + tf_pos_tanh_offset
def create_model(opt):
"""Create neural network model, defining layer architecture."""
model = Sequential()
# Convolution2D(output_depth, convolution height, convolution_width, ...)
model.add(Convolution2D(20, 5, 5, border_mode='same',
input_shape=(int((opt['crop_max_y'] - opt['crop_min_y']) / opt['scale_factor']),
int((opt['crop_max_x'] - opt['crop_min_x']) / opt['scale_factor']),
3)))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Convolution2D(30, 5, 5, border_mode='same'))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Convolution2D(30, 5, 5, border_mode='same'))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Convolution2D(30, 5, 5, border_mode='same'))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Convolution2D(20, 5, 5, border_mode='same'))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Convolution2D(10, 5, 5, border_mode='same'))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Convolution2D(1, 5, 5, border_mode='same', W_regularizer=l2(0.01), activation=tanh_zero_to_one))
compile_model(model, opt)
return model
def train_model(model, opt, validation_percentage=None, epochs=100):
"""Train the model. With so few examples, I usually prefer
to use all examples for training. Setting aside some
examples for validation is supported but not recommended."""
data = read_training_data(opt)
if validation_percentage:
return model.fit(data['x'], data['y'], nb_epoch=epochs, validation_split = validation_percentage / 100.0)
else:
return model.fit(data['x'], data['y'], nb_epoch=epochs)
def image_to_prediction(img, model, opt):
model_input = preprocess_input_image(img,opt)[None, :, :, :]
model_output = model.predict(model_input, batch_size=1)[0]
odds = cv2.split(model_output)[0]
threshold = opt['threshold']
result = np.zeros_like(odds)
result[odds > threshold] = 254
result = uncrop_scale(result,opt)
return result
# These parameters control both the size and vertical scaling of the image.
# I chose delta_x based on the width in pixels of the lane lines at the
# bottom of the image. The lessons indicated that the lanes were about
# 3.7 meters wide with a visible distance of 30 meters. I've used this
# information to determine the appropriate value of delta_y as well.
perspective_delta_x = 744
perspective_delta_y = int(perspective_delta_x * 30 / 3.7)
perspective_border_x = int(perspective_delta_x * 0.7)
perspective_max_y = perspective_delta_y
perspective_max_x = int(perspective_delta_x + 2 * perspective_border_x)
perspective_pixels_per_meter = perspective_delta_x / 3.7
perspective_origin_y_top = 440
perspective_origin_y_bottom = 670
perspective_origin_x_top_left = 609
perspective_origin_x_top_right = 673
perspective_origin_x_bottom_left = 289
perspective_origin_x_bottom_right = 1032
perspective_origin_delta_x_bottom = perspective_origin_x_bottom_right - perspective_origin_x_bottom_left
perspective_origin_delta_x_top = perspective_origin_x_top_right - perspective_origin_x_top_left
perspective_origin_delta_y = perspective_origin_y_bottom - perspective_origin_y_top
def perspective_matrices():
# These points (list of [x,y] pairs) are taken from lane lines
# in output_images/dash_undistort/straight_lines2.jpg.
src = np.float32(
[[perspective_origin_x_top_left,perspective_origin_y_top], [perspective_origin_x_top_right,perspective_origin_y_top],
[perspective_origin_x_bottom_left,perspective_origin_y_bottom], [perspective_origin_x_bottom_right,perspective_origin_y_bottom]])
# These points represent points in the perspective transformed
# image corresponding to the src points taken from the undistorted image.
dst = np.float32(
[[perspective_border_x, 0],
[perspective_border_x + perspective_delta_x, 0],
[perspective_border_x, perspective_delta_y],
[perspective_border_x + perspective_delta_x, perspective_delta_y]])
M = cv2.getPerspectiveTransform(src,dst)
M_inv= cv2.getPerspectiveTransform(dst,src)
return (M,M_inv)
M,M_inv = perspective_matrices()
def perspective_transform(img):
img = cv2.warpPerspective(img, M, (perspective_max_x, perspective_max_y), flags=cv2.INTER_LINEAR)
return img
def perspective_reverse(img):
img = cv2.warpPerspective(img, M_inv, (original_max_x, original_max_y), flags=cv2.INTER_LINEAR)
return img
def find_lane_centroids(img):
# Assuming usual lane width and car in center of lane, these are likely places to find bottom of lane lines
expected_x_starts = [perspective_border_x, perspective_border_x + perspective_delta_x]
# Create two lists to contain centroids for left and right lane lines
centroids = [[],[]]
# Size of squares in which we'll search. Wide enough to handle uncertainty.
# Narrow enough not to pick up the wrong lane line.
search_range = int(perspective_delta_x / 3.0)
y_iterations = int(perspective_max_y * 0.5 / search_range)
# Which pixels in the image have been identified as likely lane markings?
lane_pixels = img.nonzero()
lane_pixels_y = np.array(lane_pixels[0])
lane_pixels_x = np.array(lane_pixels[1])
# For each lane, sweep from bottom of image to top. We're already fairly
# certain where lanes start at bottom.
for lane_idx in range(2):
last_x = expected_x_starts[lane_idx]
found_first = False
for y_idx in range(y_iterations):
y_mid = int((y_iterations - y_idx) * perspective_max_y / y_iterations)
y_min = y_mid - search_range
y_max = y_mid + search_range
x_min = last_x - search_range
x_max = last_x + search_range
found_indices = ((lane_pixels_x >= x_min) & (lane_pixels_x <= x_max) & (lane_pixels_y >= y_min) & (lane_pixels_y <= y_max)).nonzero()[0]
found_x = lane_pixels_x[found_indices]
if len(found_x) > 1:
last_x = int(np.mean(found_x))
found_first = True
if found_first:
centroids[lane_idx].append([last_x, y_mid])
return centroids
def draw_lane_centroids(img, centroids):
img = np.copy(img)
for lane_idx in range(2):
for center in centroids[lane_idx]:
cv2.circle(img, (center[0],center[1]), 20, (255,255,255), 10)
return img
def fit_parabolas_to_lane_centroids(centroids):
polys = []
for lane_idx in range(2):
x_vals = []
y_vals = []
for point in centroids[lane_idx]:
x_vals.append(point[0])
y_vals.append(point[1])
min_y = np.amin(y_vals)
max_y = np.amax(y_vals)
mid_y = (min_y + max_y) / 2
weights = []
for y in y_vals:
if y > mid_y:
weights.append(1.0)
else:
weights.append(max(0.1, ((y - min_y) * 1.0 / (mid_y - min_y))))
polys.append(np.polyfit(y_vals, x_vals, 2, w=weights))
return polys
def draw_lane_lines(lines):
img = np.zeros((perspective_max_y,perspective_max_x), dtype="uint8")
for line in lines:
y = 1
prev_x = int(line[0] * y**2 + line[1] * y + line[2])
prev_y = y
for i in range(perspective_max_y):
y = int(perspective_max_y * i / 20)
x = int(line[0] * y**2 + line[1] * y + line[2])
if x > 0 and x < perspective_max_x:
cv2.line(img, (prev_x,prev_y), (x,y), [255,255,255], 15)
prev_x = x
prev_y = y
return img
def draw_lane_lines(lines):
img = np.zeros((perspective_max_y, perspective_max_x, 3), dtype="uint8")
points = [[],[]]
for line_idx in range(2):
line = lines[line_idx]
for i in range(31):
y = int(perspective_max_y * i / 30)
x = int(line[0] * y**2 + line[1] * y + line[2])
points[line_idx].append((x,y))
points[1].reverse()
cv2.fillPoly(img, np.int_([points[0] + points[1]]), (0,255,0))
return img
def draw_lines_on_dash(dash_img, lines):
perspective_lanes_img = draw_lane_lines(lines)
dash_lanes_img = perspective_reverse(perspective_lanes_img)
res = cv2.addWeighted(dash_img, 1, dash_lanes_img, 0.3, 0)
return res
def convert_lane_heatmap_to_lane_lines_image(img):
centroids = find_lane_centroids(img)
lines = fit_parabolas_to_lane_centroids(centroids)
res = draw_lane_lines(lines)
res = draw_lane_centroids(res, centroids)
return res
def radius_of_lane_lines(left_lane, right_lane):
if left_lane == None or right_lane == None:
return None
center = (left_lane + right_lane) / 2
#print("determining radius for " + str(center))
if abs(center[0]) < 0.000001:
return None
radius_pixels = (1 + (2 * center[0] * perspective_max_y + center[1])**2)**1.5 / (-2 * center[0])
radius_meters = radius_pixels / perspective_pixels_per_meter
#print("radius is " + str(radius_pixels) + " pixels or " + str(radius_meters) + " meters.")
return radius_meters
def offset_from_lane_center(left_lane, right_lane):
if left_lane == None or right_lane == None:
return 0.0
center = (left_lane + right_lane) / 2
lane_offset = center[0] * perspective_max_y**2 + center[1] * perspective_max_y + center[2]
car_offset = perspective_max_x / 2.0
#print("Offset... lane: " + str(lane_offset) + " car: " + str(car_offset))
return (car_offset - lane_offset) / perspective_pixels_per_meter
def annotate_original_image(img, lane_markings_img=None, lane_lines=(None,None), car_img=None):
if lane_markings_img != None:
markings_pink = np.zeros_like(lane_markings_img)
markings_gray = cv2.cvtColor(lane_markings_img, cv2.COLOR_RGB2GRAY)
markings_pink[markings_gray > 100] = np.uint8([255,20,147])
img = cv2.addWeighted(img, 0.8, markings_pink, 1.0, 0.0)
if car_img != None:
car_cyan = np.zeros_like(car_img)
car_gray = cv2.cvtColor(car_img, cv2.COLOR_RGB2GRAY)
car_cyan[car_gray > 100] = np.uint8([0,255,255])
img = cv2.addWeighted(img, 0.8, car_cyan, 0.5, 0.0)
if lane_lines[0] != None and lane_lines[1] != None:
radius = radius_of_lane_lines(lane_lines[0], lane_lines[1])
offset = offset_from_lane_center(lane_lines[0], lane_lines[1])
radius_text = "Curvature: Straight"
if radius and abs(radius) > 100 and abs(radius) < 10000:
radius_direction = "right"
if radius > 0:
radius_direction = "left"
radius_text = "Curvature radius " + str(100 * int(abs(radius) / 100)) + "m to the " + radius_direction
offset_text = "Offset: Center"
if abs(offset) > 0.1:
offset_direction = "left"
if offset > 0:
offset_direction = "right"
offset_text = "Offset: " + str(int(abs(offset * 10)) / 10.0) + "m to the " + offset_direction
cv2.putText(img, radius_text, (100,100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255))
cv2.putText(img, offset_text, (100,200), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255))
img = draw_lines_on_dash(img, lane_lines)
return img
class video_processor(object):
def __init__(self, lane_model, car_model, calibration):
self.recent_markings = []
self.lane_model = lane_model
self.car_model = car_model
self.calibration = calibration
self.prev_left = None
self.prev_right = None
def process_image(self,img):
undistorted = undistort(img, self.calibration)
markings = image_to_prediction(undistorted, self.lane_model, lane_settings)
cars = image_to_prediction(undistorted, self.car_model, car_settings)
self.recent_markings.append(markings)
if len(self.recent_markings) > 30:
self.recent_markings = self.recent_markings[-30:]
combined_markings = np.zeros_like(markings)
included_so_far = 0
for i in np.random.choice(range(len(self.recent_markings)),size=10):
new_weight = 1.0 / (included_so_far + 1)
old_weight = 1.0 - new_weight
combined_markings = cv2.addWeighted(combined_markings, old_weight , self.recent_markings[i], new_weight, 0.0)
included_so_far += 1
combined_markings[combined_markings < 80] = 0
birds_eye_markings = perspective_transform(combined_markings)
#print("=== Processing image ===")
centroids = find_lane_centroids(birds_eye_markings)
#print("Centroids: " + str(centroids))
lines = fit_parabolas_to_lane_centroids(centroids)
#print("Lines: " + str(lines))
self.prev_left = lines[0]
self.prev_right = lines[1]
result = annotate_original_image(undistorted, combined_markings, lines, cars)
#print("++++++++++++++++++++++++")
return result
def process_video(video_path_in, video_path_out, lane_model, car_model, calibration):
clip_in = VideoFileClip(video_path_in)
processor = video_processor(lane_model=lane_model, car_model=car_model, calibration=calibration)
clip_out = clip_in.fl_image(processor.process_image)
clip_out.write_videofile(video_path_out, audio=False)
def save_examples_from_video():
video1 = VideoFileClip('project_video.mp4')
example_seconds = [0,10,20,30,40,50]
for s in example_seconds:
video1.save_frame('test_images/video1_' + str(int(s+0.5)) + '.jpg',
s)
def main():
calibration = calibrate_chessboard()
#undistort_files(calibration, 'camera_cal/calibration*.jpg', 'output_images/chessboard_undistort')
#save_examples_from_video()
#undistort_files(calibration, 'test_images/*.jpg', 'output_images/dash_undistort')
lane_model = create_model(lane_settings)
#train_model(lane_model, lane_settings, epochs=1000)
#lane_model.save_weights('models/lanes.h5')
lane_model.load_weights('models/lanes.h5')
car_model = create_model(car_settings)
#train_model(car_model, car_settings, epochs=1000)
#car_model.save_weights('models/cars.h5')
car_model.load_weights('models/cars.h5')
#transform_image_files(lambda img: crop_scale_white_balance(img, lane_settings),
# 'test_images/*.jpg', 'output_images/cropped_lanes')
#transform_image_files(lambda img: uncrop_scale(img, lane_settings),
# 'output_images/cropped_lanes/*.jpg', 'output_images/uncropped_lanes')
#transform_image_files((lambda img: image_to_prediction(img, lane_model, lane_settings)),
# 'test_images/*.jpg', 'output_images/markings')
transform_image_files(perspective_transform,
'output_images/dash_undistort/*.jpg',
'output_images/birds_eye')
transform_image_files(perspective_reverse,
'output_images/birds_eye/*.jpg',
'output_images/bird_to_dash')
undistort_files(calibration,
'output_images/markings/*.jpg',
'output_images/undistort_markings')
transform_image_files(perspective_transform,
'output_images/undistort_markings/*.jpg',
'output_images/birds_eye_markings')
transform_image_files(convert_lane_heatmap_to_lane_lines_image,
'output_images/birds_eye_markings/*.jpg',
'output_images/birds_eye_lines')
transform_image_files(lambda img: video_processor(lane_model=lane_model,car_model=car_model,calibration=calibration).process_image(img),
'test_images/*.jpg',
'output_images/final')
#process_video('project_video.mp4', 'output_images/videos/project_video.mp4', lane_model, car_model, calibration)
if __name__ == '__main__':
main()