-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProperty_attack_diff_pool.py
314 lines (227 loc) · 10.4 KB
/
Property_attack_diff_pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from math import ceil
import torch
import torch.nn.functional as F
import torch.nn as nn
import tqdm
import torch_geometric.transforms as T
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DenseDataLoader
from torch_geometric.nn import DenseSAGEConv, dense_diff_pool
from torch.utils.data import DataLoader, Dataset
max_nodes = 111
dataset = TUDataset(root='./tmp', name='NCI1', transform=T.ToDense(max_nodes))
# torch.manual_seed(12315)
# dataset = dataset.shuffle()
dataset_2 = TUDataset(root='/tmp/NCI1', name='NCI1')
dataset_length = len(dataset)
# split the dataset into 3 parts
DA_train = dataset[0:int(0.4 * dataset_length)]
D_aux = dataset[int(0.4 * dataset_length):int(0.7 * dataset_length)]
D_aux_2 = dataset_2[int(0.4 * dataset_length):int(0.7 * dataset_length)]
DA_test = dataset[int(0.7 * dataset_length):]
buck_num = 2
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
num_nodes = ceil(0.25 * 111)
self.gnn1_pool = DenseSAGEConv(37, num_nodes)
self.gnn1_embed = DenseSAGEConv(37, 192)
num_nodes = ceil(0.25 * num_nodes)
self.gnn2_pool = DenseSAGEConv(192, num_nodes)
self.gnn2_embed = DenseSAGEConv(192, 192)
self.gnn3_embed = DenseSAGEConv(192, 192)
self.lin1 = torch.nn.Linear(192, 192)
self.lin2 = torch.nn.Linear(192, 2)
def forward(self, x, adj, mask=None):
s = self.gnn1_pool(x, adj, mask)
x = self.gnn1_embed(x, adj, mask)
# print(s.shape) # [1, 111, 28]
# print(x.shape) # [1, 111, 192]
x, adj, l1, e1 = dense_diff_pool(x, adj, s, mask)
# print(x.shape) # [1, 28, 192]
# print(adj.shape) # [1, 28, 28]
s = self.gnn2_pool(x, adj)
x = self.gnn2_embed(x, adj)
# print(s.shape)
# print(x.shape)
x, adj, l2, e2 = dense_diff_pool(x, adj, s)
x = self.gnn3_embed(x, adj)
x = x.mean(dim=1)
node_embedding = x
x = self.lin1(x).relu()
x = self.lin2(x)
return F.log_softmax(x, dim=-1), l1 + l2, e1 + e2, node_embedding
model_path = "NCI_model_diff_pool.pt"
model_sage = Net()
model_sage = torch.load(model_path)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_sage = model_sage.to(device)
# get graph embedding from node embedding for D aux using mean pool
D_aux_graph_embedding = []
D_aux_num_of_nodes_raw_data = []
D_aux_num_of_edges_raw_data = []
D_aux_graph_density_raw = []
for index, data in enumerate(D_aux):
data = data.to(device)
_, _, _, test_output = model_sage(data.x, data.adj)
D_aux_graph_embedding.append(test_output.squeeze(dim=0).cpu())
D_aux_num_of_nodes_raw_data.append(D_aux_2[index].num_nodes)
D_aux_num_of_edges_raw_data.append(D_aux_2[index].num_edges)
density_temp = 2 * D_aux_2[index].num_nodes / (D_aux_2[index].num_edges * (D_aux_2[index].num_edges - 1))
D_aux_graph_density_raw.append(density_temp)
del test_output
del data
print(len(D_aux_num_of_nodes_raw_data))
D_aux_num_of_nodes_raw_data_train = D_aux_num_of_nodes_raw_data[0:int(0.7 * len(D_aux_num_of_nodes_raw_data))]
D_aux_num_of_edges_raw_data_train = D_aux_num_of_edges_raw_data[0:int(0.7 * len(D_aux_num_of_edges_raw_data))]
D_aux_graph_embedding_train = D_aux_graph_embedding[0:int(0.7 * len(D_aux_graph_embedding))]
D_aux_graph_density_train = D_aux_graph_density_raw[0:int(0.7 * len(D_aux_graph_density_raw))]
print(len(D_aux_num_of_nodes_raw_data_train))
D_aux_num_of_nodes_raw_data_test = D_aux_num_of_nodes_raw_data[int(0.7 * len(D_aux_num_of_nodes_raw_data)):]
D_aux_num_of_edges_raw_data_test = D_aux_num_of_edges_raw_data[int(0.7 * len(D_aux_num_of_edges_raw_data)):]
D_aux_graph_embedding_test = D_aux_graph_embedding[int(0.7 * len(D_aux_graph_embedding)):]
D_aux_graph_density_test = D_aux_graph_density_raw[int(0.7 * len(D_aux_graph_density_raw)):]
print(len(D_aux_num_of_nodes_raw_data_test))
def split_buck(data, buck):
# get the maximum number in data
N_max = data[0]
for i in data:
if i > N_max:
N_max = i
# sort the data w.r.t. data.num_nodes
sorted_list = sorted(data, key=lambda x: x, reverse=False)
# print('length of sorted list: ', len(sorted_list))
# num of elements in each buck
buck_num = round(len(data) / buck)
# split point for data w.r.t. buck
split_pt = []
cnt = 0
for i in sorted_list:
cnt += 1
if cnt == buck_num:
cnt = 0
split_pt.append(i)
if len(split_pt) == buck:
split_pt[-1] = N_max + 1
else:
split_pt.append(N_max + 1)
res = []
for i in data:
for index, j in enumerate(split_pt):
if i <= j:
res.append(index)
break
return res
D_aux_nodes_train = split_buck(D_aux_num_of_nodes_raw_data_train, buck_num)
D_aux_nodes_test = split_buck(D_aux_num_of_nodes_raw_data_test, buck_num)
D_aux_edges_train = split_buck(D_aux_num_of_edges_raw_data_train, buck_num)
D_aux_edges_test = split_buck(D_aux_num_of_edges_raw_data_test, buck_num)
D_aux_density_train = split_buck(D_aux_graph_density_train, buck_num)
D_aux_density_test = split_buck(D_aux_graph_density_test, buck_num)
class TrainSet(Dataset):
def __init__(self, X, num_nodes, num_edges, graph_density):
self.X = torch.stack(X)
self.num_nodes = torch.tensor(num_nodes, dtype=torch.float)
self.num_edges = torch.tensor(num_edges, dtype=torch.float)
self.graph_density = torch.tensor(graph_density, dtype=torch.float)
def __getitem__(self, index):
return self.X[index], self.num_nodes[index], self.num_edges[index], self.graph_density[index]
def __len__(self):
return len(self.num_nodes)
# mydataset = TrainSet(D_aux_graph_embedding_train, D_aux_nodes_train)
mydataset = TrainSet(D_aux_graph_embedding_train, D_aux_nodes_train, D_aux_edges_train, D_aux_density_train)
train_loader = DataLoader(mydataset, batch_size=10, shuffle=True)
class Network(nn.Module):
def __init__(self, buck_num):
super().__init__()
self.num_features = 192
self.num_buck = buck_num
self.featureNet = nn.Sequential(
nn.Linear(self.num_features, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, self.num_features),
nn.ReLU()
)
self.nodeNet = nn.Sequential(
nn.Linear(self.num_features, self.num_features),
nn.ReLU(),
nn.Linear(self.num_features, self.num_buck)
)
self.edgeNet = nn.Sequential(
nn.Linear(self.num_features, self.num_features),
nn.ReLU(),
nn.Linear(self.num_features, self.num_buck)
)
self.graphDensity = nn.Sequential(
nn.Linear(self.num_features, self.num_features),
nn.ReLU(),
nn.Linear(self.num_features, self.num_buck)
)
def forward(self, x):
x = self.featureNet(x)
pred_nodes = self.nodeNet(x)
pred_edges = self.edgeNet(x)
pred_density = self.graphDensity(x)
return pred_nodes, pred_edges, pred_density
model = Network(buck_num).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
def train():
model.train()
total_loss = 0
for data in tqdm.tqdm(train_loader):
inputs, num_nodes, num_edges, graph_density = data
optimizer.zero_grad()
inputs = inputs.detach()
num_nodes = num_nodes.detach()
num_edges = num_edges.detach()
graph_density = graph_density.detach()
pred_nodes, pred_edges, pred_density = model(inputs.to(device))
loss_1 = criterion(pred_nodes, num_nodes.type(torch.LongTensor).to(device))
loss_2 = criterion(pred_edges, num_edges.type(torch.LongTensor).to(device))
loss_3 = criterion(pred_density, graph_density.type(torch.LongTensor).to(device))
loss = loss_1 + loss_2 + loss_3
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(D_aux_nodes_train)
# mytestdata = TrainSet(D_aux_graph_embedding_test, D_aux_nodes_test)
mytestdata = TrainSet(D_aux_graph_embedding_test, D_aux_nodes_test, D_aux_edges_test, D_aux_density_test)
test_loader = DataLoader(mytestdata, batch_size=1, shuffle=False)
@torch.no_grad()
def test():
model.eval()
total_loss = 0
accu_nodes = 0
accu_edges = 0
accu_density = 0
for data in tqdm.tqdm(test_loader):
inputs, num_nodes, num_edges, graph_density = data
inputs = inputs.detach()
num_nodes = num_nodes.detach()
num_edges = num_edges.detach()
graph_density = graph_density.detach()
pred_nodes, pred_edges, pred_density = model(inputs.to(device))
pred_nodes_argmax = torch.argmax(pred_nodes, dim=1).type(torch.float).cpu()
pred_edges_argmax = torch.argmax(pred_edges, dim=1).type(torch.float).cpu()
pred_density_argmax = torch.argmax(pred_density, dim=1).type(torch.float).cpu()
if torch.equal(pred_nodes_argmax, num_nodes):
accu_nodes += 1
if torch.equal(pred_edges_argmax, num_edges):
accu_edges += 1
if torch.equal(pred_density_argmax, graph_density):
accu_density += 1
loss_1 = criterion(pred_nodes, num_nodes.type(torch.LongTensor).to(device))
loss_2 = criterion(pred_edges, num_edges.type(torch.LongTensor).to(device))
loss_3 = criterion(pred_density, graph_density.type(torch.LongTensor).to(device))
loss = loss_1 + loss_2 + loss_3
total_loss += loss.item()
return total_loss / len(D_aux_nodes_test), accu_nodes / len(D_aux_nodes_test), accu_edges / len(
D_aux_nodes_test), accu_density / len(D_aux_nodes_test)
for epoch in range(60):
train_loss = train()
test_loss, test_nodes_accu, test_edges_accu, test_density_accu = test()
print(
f'Epoch: {epoch:4d}, Train loss: {train_loss:.4f}, Test loss: {test_loss:.4f}, Test node accu: {test_nodes_accu:.4f}, Test edge accu: {test_edges_accu:.4f}, Test density accu: {test_density_accu:.4f}')