forked from shibing624/MedicalGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenai_api.py
610 lines (511 loc) · 20.7 KB
/
openai_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
# Requirement:
# pip install openai
# Usage:
# python openai_api.py
# Visit http://localhost:8000/docs for documents.
import base64
import copy
import json
import time
from argparse import ArgumentParser
from contextlib import asynccontextmanager
from threading import Thread
from typing import Dict, List, Literal, Optional, Union, Any
import torch
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from loguru import logger
from pydantic import BaseModel, Field
from starlette.middleware.base import BaseHTTPMiddleware
from starlette.requests import Request
from starlette.responses import Response
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import GenerationConfig, TextIteratorStreamer
from template import get_conv_template
class BasicAuthMiddleware(BaseHTTPMiddleware):
def __init__(self, app, username: str, password: str):
super().__init__(app)
self.required_credentials = base64.b64encode(
f'{username}:{password}'.encode()).decode()
async def dispatch(self, request: Request, call_next):
authorization: str = request.headers.get('Authorization')
if authorization:
try:
schema, credentials = authorization.split()
if credentials == self.required_credentials:
return await call_next(request)
except ValueError:
pass
headers = {'WWW-Authenticate': 'Basic'}
return Response(status_code=401, headers=headers)
def _gc(forced: bool = False):
global args
if args.disable_gc and not forced:
return
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
@asynccontextmanager
async def lifespan(app: FastAPI): # collects GPU memory
yield
_gc(forced=True)
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=['*'],
allow_headers=['*'],
)
class ModelCard(BaseModel):
id: str
object: str = 'model'
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = 'owner'
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = 'list'
data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal['user', 'assistant', 'system', 'function', 'tool']
content: Optional[str] = None
tool_calls: Optional[Dict] = None
class DeltaMessage(BaseModel):
role: Optional[Literal['user', 'assistant', 'system']] = None
content: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
tools: Optional[List[Dict]] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
max_length: Optional[int] = None
stream: Optional[bool] = False
stop: Optional[List[str]] = None
class ChatCompletionResponseChoice(BaseModel):
index: int
message: Union[ChatMessage]
finish_reason: Literal['stop', 'length', 'tool_calls']
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal['stop', 'length']] = None
class ChatCompletionResponseUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: Literal["chatcmpl-default"] = "chatcmpl-default"
object: Literal["chat.completion"] = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: ChatCompletionResponseUsage
class ChatCompletionStreamResponse(BaseModel):
id: Literal["chatcmpl-default"] = "chatcmpl-default"
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
@app.get('/v1/models', response_model=ModelList)
async def list_models():
global model_args
model_card = ModelCard(id='gpt-3.5-turbo')
return ModelList(data=[model_card])
# To work around that unpleasant leading-\n tokenization issue!
def add_extra_stop_words(stop_words):
_stop_words = []
if stop_words:
_stop_words.extend(stop_words)
for x in stop_words:
s = x.lstrip('\n')
if s and (s not in _stop_words):
_stop_words.append(s)
return _stop_words
def trim_stop_words(response, stop_words):
if stop_words:
for stop in stop_words:
idx = response.find(stop)
if idx != -1:
response = response[:idx]
return response
TOOL_DESC = (
'{name_for_model}: Call this tool to interact with the {name_for_human} API.'
' What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}'
)
REACT_INSTRUCTION = """Answer the following questions as best you can. You have access to the following APIs:
{tools_text}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tools_name_text}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!"""
_TEXT_COMPLETION_CMD = object()
def parse_messages(messages, tools):
if all(m.role != 'user' for m in messages):
raise HTTPException(
status_code=400,
detail='Invalid request: Expecting at least one user message.',
)
messages = copy.deepcopy(messages)
if messages[0].role == 'system':
system = messages.pop(0).content.lstrip('\n').rstrip()
else:
system = ''
if tools:
tools_text = []
tools_name_text = []
for tool_info in tools:
name = tool_info.get('name', '')
name_m = tool_info.get('name_for_model', name)
name_h = tool_info.get('name_for_human', name)
desc = tool_info.get('description', '')
desc_m = tool_info.get('description_for_model', desc)
params = tool_info.get('parameters', {})
tool = TOOL_DESC.format(
name_for_model=name_m,
name_for_human=name_h,
# Hint: You can add the following format requirements in description:
# "Format the arguments as a JSON object."
# "Enclose the code within triple backticks (`) at the beginning and end of the code."
description_for_model=desc_m,
parameters=json.dumps(params, ensure_ascii=False),
)
tools_text.append(tool)
tools_name_text.append(name_m)
tools_text = '\n\n'.join(tools_text)
tools_name_text = ', '.join(tools_name_text)
instruction = (REACT_INSTRUCTION.format(
tools_text=tools_text,
tools_name_text=tools_name_text,
).lstrip('\n').rstrip())
else:
instruction = ''
messages_with_fncall = messages
messages = []
for m_idx, m in enumerate(messages_with_fncall):
role, content, tool_calls = m.role, m.content, m.tool_calls
content = content or ''
content = content.lstrip('\n').rstrip()
if role == 'function':
if (len(messages) == 0) or (messages[-1].role != 'assistant'):
raise HTTPException(
status_code=400,
detail='Invalid request: Expecting role assistant before role function.',
)
messages[-1].content += f'\nObservation: {content}'
if m_idx == len(messages_with_fncall) - 1:
# add a prefix for text completion
messages[-1].content += '\nThought:'
elif role == 'assistant':
if len(messages) == 0:
raise HTTPException(
status_code=400,
detail=
'Invalid request: Expecting role user before role assistant.',
)
if tool_calls is None:
if tools:
content = f'Thought: I now know the final answer.\nFinal Answer: {content}'
else:
f_name, f_args = tool_calls['name'], tool_calls['arguments']
if not content.startswith('Thought:'):
content = f'Thought: {content}'
content = f'{content}\nAction: {f_name}\nAction Input: {f_args}'
if messages[-1].role == 'user':
messages.append(
ChatMessage(role='assistant',
content=content.lstrip('\n').rstrip()))
else:
messages[-1].content += '\n' + content
elif role == 'user':
messages.append(
ChatMessage(role='user',
content=content.lstrip('\n').rstrip()))
else:
raise HTTPException(
status_code=400,
detail=f'Invalid request: Incorrect role {role}.')
query = _TEXT_COMPLETION_CMD
if messages[-1].role == 'user':
query = messages[-1].content
messages = messages[:-1]
if len(messages) % 2 != 0:
raise HTTPException(status_code=400, detail='Invalid request')
history = [] # [(Q1, A1), (Q2, A2), ..., (Q_last_turn, A_last_turn)]
for i in range(0, len(messages), 2):
if messages[i].role == 'user' and messages[i + 1].role == 'assistant':
usr_msg = messages[i].content.lstrip('\n').rstrip()
bot_msg = messages[i + 1].content.lstrip('\n').rstrip()
if instruction and (i == len(messages) - 2):
usr_msg = f'{instruction}\n\nQuestion: {usr_msg}'
instruction = ''
history.append([usr_msg, bot_msg])
else:
raise HTTPException(
status_code=400,
detail='Invalid request: Expecting exactly one user (or function) role before every assistant role.',
)
if instruction:
assert query is not _TEXT_COMPLETION_CMD
query = f'{instruction}\n\nQuestion: {query}'
return query, history, system
def parse_response(response):
func_name, func_args = '', ''
i = response.find('\nAction:')
j = response.find('\nAction Input:')
k = response.find('\nObservation:')
if 0 <= i < j: # If the text has `Action` and `Action input`,
if k < j: # but does not contain `Observation`,
# then it is likely that `Observation` is omitted by the LLM,
# because the output text may have discarded the stop word.
response = response.rstrip() + '\nObservation:' # Add it back.
k = response.find('\nObservation:')
func_name = response[i + len('\nAction:'):j].strip()
func_args = response[j + len('\nAction Input:'):k].strip()
if func_name:
response = response[:i]
t = response.find('Thought: ')
if t >= 0:
response = response[t + len('Thought: '):]
response = response.strip()
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(
role='assistant',
content=response,
tool_calls={
'name': func_name,
'arguments': func_args
},
),
finish_reason='tool_calls',
)
return choice_data
z = response.rfind('\nFinal Answer: ')
if z >= 0:
response = response[z + len('\nFinal Answer: '):]
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role='assistant', content=response),
finish_reason='stop',
)
return choice_data
def prepare_chat(tokenizer, query, history, system):
"""Prepare model inputs for chat completion."""
if prompt_template:
history_messages = history + [[query, ""]]
prompt = prompt_template.get_prompt(messages=history_messages, system_prompt=system)
else:
messages = [
{"role": "system", "content": system}
]
for i, (question, response) in enumerate(history):
question = question.lstrip('\n').rstrip()
response = response.lstrip('\n').rstrip()
messages.append({"role": "user", "content": question})
messages.append({"role": "assistant", "content": response})
messages.append({"role": "user", "content": query})
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([prompt], return_tensors='pt')
return model_inputs
def model_chat(model, tokenizer, query, history, gen_kwargs, system):
"""Generate chat completion from the model."""
model_inputs = prepare_chat(tokenizer, query, history, system).to(model.device)
generated_ids = model.generate(model_inputs.input_ids, **gen_kwargs)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
prompt_length = len(model_inputs.input_ids[0])
response_length = len(generated_ids[0])
return response, prompt_length, response_length
def stream_model_chat(model, tokenizer, query, history, gen_kwargs, system):
"""Generate chat completion from the model in stream mode."""
model_inputs = prepare_chat(tokenizer, query, history, system).to(model.device)
gen_kwargs['inputs'] = model_inputs.input_ids
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen_kwargs['streamer'] = streamer
thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
thread.start()
yield from streamer
@app.post('/v1/chat/completions', response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
"""Generate chat completion."""
global model, tokenizer
gen_kwargs = {}
if request.top_k is not None:
gen_kwargs['top_k'] = request.top_k
if request.temperature is not None:
if request.temperature < 0.01:
gen_kwargs['top_k'] = 1 # greedy decoding
else:
# Not recommended. Please tune top_p instead.
gen_kwargs['temperature'] = request.temperature
if request.top_p is not None:
gen_kwargs['top_p'] = request.top_p
if request.max_length is not None:
gen_kwargs['max_length'] = request.max_length
stop_words = add_extra_stop_words(request.stop)
if request.tools:
stop_words = stop_words or []
if 'Observation:' not in stop_words:
stop_words.append('Observation:')
query, history, system = parse_messages(request.messages, request.tools)
if request.stream:
if request.tools:
raise HTTPException(
status_code=400,
detail='Invalid request: Function calling is not yet implemented for stream mode.',
)
generate = stream_chat_completion(
query,
history,
request.model,
stop_words,
gen_kwargs,
system=system
)
return StreamingResponse(generate, media_type='text/event-stream')
response, prompt_length, response_length = model_chat(
model,
tokenizer,
query,
history,
gen_kwargs=gen_kwargs,
system=system
)
logger.debug(f'*** history begin ***\n{history}\n*** history end ***\n'
f'question: {query}\nresponse: {response}\n')
_gc()
response = trim_stop_words(response, stop_words)
if request.tools:
choice_data = parse_response(response)
else:
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role='assistant', content=response),
finish_reason='stop',
)
usage = ChatCompletionResponseUsage(
prompt_tokens=prompt_length,
completion_tokens=response_length,
total_tokens=prompt_length + response_length,
)
return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage)
def dictify(data: BaseModel) -> Dict[str, Any]:
try: # pydantic v2
return data.model_dump(exclude_unset=True)
except AttributeError: # pydantic v1
return data.dict(exclude_unset=True)
def jsonify(data: BaseModel) -> str:
try: # pydantic v2
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
except AttributeError: # pydantic v1
return data.json(exclude_unset=True, ensure_ascii=False)
async def stream_chat_completion(
query: str,
history: List[List[str]],
model_id: str,
stop_words: List[str],
gen_kwargs: Dict,
system: str,
):
"""Generate chat completion in stream mode."""
global model, tokenizer
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=DeltaMessage(role='assistant', content=""), finish_reason=None)
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data])
yield jsonify(chunk)
stop_words = [x for x in stop_words if x]
response_generator = stream_model_chat(
model,
tokenizer,
query,
history,
gen_kwargs,
system
)
for token_output in response_generator:
# Check if any stop word is in the token output
if any(stop_word in token_output for stop_word in stop_words):
break
# Send the current token as part of the response
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=DeltaMessage(content=token_output), finish_reason=None)
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data])
yield jsonify(chunk)
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=DeltaMessage(), finish_reason='stop'
)
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data])
yield jsonify(chunk)
yield '[DONE]'
_gc()
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--base_model', type=str, default='Qwen/Qwen-7B-Chat', help='Model name or path')
parser.add_argument('--lora_model', default=None, type=str, help="If None, perform inference on the base model")
parser.add_argument('--template_name', default=None, type=str,
help="Prompt template name, eg: alpaca, vicuna, baichuan, chatglm2 etc.")
parser.add_argument('--api_auth', help='API authentication credentials')
parser.add_argument('--cpu_only', action='store_true', help='Run demo with CPU only')
parser.add_argument('--server_port', type=int, default=8000, help='Demo server port.')
parser.add_argument('--server_name', type=str, default='127.0.0.1',
help=('Demo server name. Default: 127.0.0.1, which is only visible from the local computer. '
'If you want other computers to access your server, use 0.0.0.0 instead.')
)
parser.add_argument('--disable_gc', action='store_true', help='Disable GC after each response generated.')
args = parser.parse_args()
logger.info(args)
if args.api_auth:
app.add_middleware(
BasicAuthMiddleware,
username=args.api_auth.split(':')[0],
password=args.api_auth.split(':')[1]
)
tokenizer = AutoTokenizer.from_pretrained(
args.base_model,
trust_remote_code=True,
resume_download=True,
)
if args.cpu_only:
device_map = 'cpu'
else:
device_map = 'auto'
model = AutoModelForCausalLM.from_pretrained(
args.base_model,
device_map=device_map,
trust_remote_code=True,
resume_download=True,
)
if args.lora_model:
from peft import PeftModel
model = PeftModel.from_pretrained(model, args.lora_model, device_map=device_map)
logger.debug(f'Loaded LORA model: {args.lora_model}')
model = model.eval()
model.generation_config = GenerationConfig.from_pretrained(
args.base_model,
trust_remote_code=True,
resume_download=True,
)
if args.template_name:
prompt_template = get_conv_template(args.template_name)
else:
prompt_template = None
uvicorn.run(app, host=args.server_name, port=args.server_port, workers=1)