forked from fanshaoze/RL-AL-for-Power-Converter-Design
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharguments.py
77 lines (61 loc) · 2.87 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import argparse
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--no_cuda', action='store_true', default=False, help='do not use cuda')
parser.add_argument(
'--query-times', type=int, default=1, help='the number of queries')
parser.add_argument(
'--sigma', type=float, default=1e-4, help='likelihood noise')
parser.add_argument(
'--num-runs', type=int, help='number of runs for UCT')
parser.add_argument(
'--seed', type=int, default=0, help='random seed (default: 0)')
parser.add_argument(
'--seed-range', nargs='+', type=int, default=[0, 2], help='random seed range')
parser.add_argument(
'--dry', action='store_true', default=False, help='dry run')
parser.add_argument(
'--debug', action='store_true', default=False, help='debug mode')
parser.add_argument(
'--skip-sim', action='store_true', default=False, help='skip the the topologies which is not in the '
'simulation hash')
parser.add_argument(
'--sweep', action='store_true', default=True, help='sweep duty cycles')
parser.add_argument(
'--get-traindata', action='store_true', default=False, help='want to get training data using uct')
parser.add_argument(
'--k-list', nargs='+', type=int, default=[3], help='evaluate top k topos'
)
parser.add_argument(
'--output', type=str, default='result', help='output json file name'
)
parser.add_argument(
'--model', type=str, default='analytics', choices=['simulator', 'transformer', 'gp', 'analytics', 'gnn'],
help='surrogate model'
)
parser.add_argument(
'--traj', nargs='+', type=int, default=[2, 3], help='trajectory numbers'
)
parser.add_argument(
'--eff-model', type=str, default='reg_eff-3-5', help='eff pt model file name'
)
parser.add_argument(
'--vout-model', type=str, default='reg_vout-4-5', help='vout pt model file name'
)
parser.add_argument(
'--reward-model', type=str, default=None, help='reward pt model file name'
)
parser.add_argument(
'--vocab', type=str, default='dataset_5_vocab.json', help='transformer vocab file'
)
parser.add_argument(
'--round', type=str, default='None', help='using classified vout'
)
parser.add_argument('--gnn-nodes', type=int, default=40, help='number of nodes in hidden layer in GNN')
parser.add_argument('--predictor-nodes', type=int, default=10, help='number of MLP predictor nodes at output of GNN')
parser.add_argument('--gnn-layers', type=int, default=4, help='number of layer')
parser.add_argument('--model-index', type=int, default=3, help='model index')
parser.add_argument('--nnode', type=int, default=7, help='number of node')
args = parser.parse_args()
return args