-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrrt.py
114 lines (103 loc) · 4.63 KB
/
rrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import math
class RRT:
def __init__(self, map, start_state, goal_state, initial_control):
self.map = map
self.height = np.shape(map)[0]
self.width = np.shape(map)[1]
self.start_state = start_state
self.goal_state = goal_state
self.vertices = {self.start_state: {'Parent': None, 'Control': initial_control}}
self.delta_t = 10
self.T = 100
self.L = 50
def random_state(self):
x = int(self.width * np.random.random_sample())
y = int(self.start_state[1] * np.random.random_sample())
theta = (2 * np.random.random_sample() - 1) * np.pi
random_state = (x, y, theta)
return random_state
def check_if_valid(self, pos):
if pos[0] >= self.width or pos[1] >= self.height or pos[0] < 0 or pos[1] < 0 or self.map[pos[1], pos[0]] == 0:
return False
else:
return True
def calculate_metrics(self, state1, state2, gamma):
alfa = 1
beta = 1
metrics = pow(alfa * pow((state1[0] - state2[0]), 2) + beta * pow((state1[1] - state2[1]), 2) + gamma * pow(
(state1[2] - state2[2]), 2), 0.5)
return metrics
def find_closest_state(self, pos):
metrics_min = math.sqrt(self.width ** 2 + self.height ** 2)
for key in self.vertices.keys():
metrics = self.calculate_metrics(pos, key, 20)
if metrics < metrics_min:
closest = key
metrics_min = metrics
return closest
def random_control(self):
v_lin = np.random.random_sample()
turn_angle = (2 * np.random.random_sample() - 1) * np.pi / 4
return v_lin, turn_angle
def new_state(self, u, xk):
x_new = u[0] * np.sin(xk[2]) * self.delta_t + xk[0]
y_new = xk[1] - u[0] * np.cos(xk[2]) * self.delta_t
theta_new = (u[0] / self.L) * np.tan(u[1]) * self.delta_t + xk[2]
new_state = (int(x_new), int(y_new), theta_new)
return new_state
def extend(self, xnear, xrand):
metrics_ref = 25
metrics_max = self.calculate_metrics(xnear, xrand, 20)
current_state = xnear
u = self.random_control()
for iter in range(0, int(self.T / self.delta_t)):
x_new = self.new_state(u, current_state)
if self.check_if_valid(x_new):
if self.calculate_metrics(x_new, xrand, 20) < metrics_max:
if self.calculate_metrics(x_new, xrand, 20) <= metrics_ref or iter == self.T / self.delta_t - 1:
self.vertices[x_new] = {}
self.vertices[x_new]['Parent'] = xnear
self.vertices[x_new]['Control'] = u
return x_new
current_state = x_new
metrics_max = self.calculate_metrics(current_state, xrand, 20)
else:
return None
def search(self):
endReached = False
startReached = False
prox = 100
path = []
controls = []
while not endReached:
if not self.check_if_valid(self.start_state):
break
xrand = self.random_state()
xnear = self.find_closest_state(xrand)
xnew = self.extend(xnear, xrand)
if len(self.vertices) > 50:
self.vertices.clear()
path.append((self.start_state[0], self.start_state[1], 0))
path.append((self.goal_state[0], self.goal_state[1], 0))
startReached = True
break
if xnew is not None:
if self.calculate_metrics(xnew, self.goal_state, 20) <= prox:
self.vertices[xnew] = {}
self.vertices[xnew]['Parent'] = xnear
self.vertices[xnew]['Control'] = (0, 0)
endReached = True
considered_node = xnew
path.append(considered_node)
while not startReached:
considered_node = self.vertices[considered_node]['Parent']
path.append(considered_node)
controls.append(self.vertices[considered_node]['Control'])
if considered_node[0] == self.start_state[0] and considered_node[1] == self.start_state[1]:
startReached = True
path_to_draw = [(i[0], i[1]) for i in path]
angles = [i[2] for i in path]
all_points = [(i[0], i[1]) for i in self.vertices.keys()]
controls.reverse()
return path_to_draw, all_points, controls, angles