forked from martin-wey/peft-llm-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
232 lines (193 loc) · 8.37 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import json
import os
import evaluate
import torch
from langchain.docstore.document import Document as LangchainDocument
from langchain_community.vectorstores import FAISS
from langchain_community.vectorstores.utils import DistanceStrategy
from langchain_huggingface import HuggingFaceEmbeddings
from peft import PeftModel
from rich.progress import MofNCompleteColumn, BarColumn, Progress, TextColumn, TimeElapsedColumn
from tqdm import tqdm
from transformers import set_seed, AutoModelForCausalLM, AutoTokenizer
from datasets import load_from_disk
from utils import track_gpu_usage
def prepare_input(sample, knowledge_base_vectors, args):
if args.use_rag:
query = sample[args.instruction_field]
retrieved_docs = knowledge_base_vectors.similarity_search(query=query, k=args.rag_top_k)
chat_docs = []
for doc in retrieved_docs:
chat_docs += [
{"role": "user", "content": doc.page_content},
{"role": "assistant", "content": doc.metadata["code"]}
]
return chat_docs + sample["messages"][:-1]
return sample["messages"][:-1]
@track_gpu_usage
def generate(args, dataset, model, tokenizer, knowledge_base_vectors=None):
gen_kwargs = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"top_p": args.top_p,
"top_k": args.top_k,
}
with (Progress(
TextColumn(f"Generating responses •" + "[progress.percentage]{task.percentage:>3.0f}%"),
BarColumn(),
MofNCompleteColumn(),
TextColumn("•"),
TimeElapsedColumn(),
) as p):
for sample in p.track(dataset):
example = prepare_input(sample, knowledge_base_vectors, args)
inputs = tokenizer.apply_chat_template(
example,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True
).to(model.device)
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=args.max_new_tokens,
**gen_kwargs
)
response_ids = outputs[0][inputs["input_ids"].shape[1]:]
response = tokenizer.decode(response_ids, skip_special_tokens=False)
print(response.strip())
yield response.strip()
def compute_metrics(args, responses, dataset):
if args.dataset_name == "apps":
"""
@todo: fix pyext and Python 3.12 --> try downgrading to 3.11
responses = [[resp] for resp in responses]
apps_metric = evaluate.load('codeparrot/apps_metric')
metrics = apps_metric.compute(predictions=responses, level="all")
print(f"APPs: {metrics}")
"""
return {}
else:
chrf = evaluate.load("chrf")
em = evaluate.load("exact_match")
references = dataset[args.reference_field]
results_em = em.compute(predictions=responses, references=references)
references_chrf = [[ref] for ref in references]
results_chrf = chrf.compute(predictions=responses, references=references_chrf)
results_chrf2 = chrf.compute(predictions=responses, references=references_chrf, word_order=2)
print(f"EM: {results_em}")
print(f"chrF: {results_chrf}")
print(f"chrF++: {results_chrf2}")
return {
"em": results_em,
"chrf": results_chrf,
"chrf2": results_chrf2
}
def main(args):
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
if args.peft_checkpoint_path is not None:
model = PeftModel.from_pretrained(model, args.peft_checkpoint_path)
args.model_name = args.model_name_or_path.split("/")[-1]
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
dataset = load_from_disk(args.dataset_name_or_path)["test"]
args.dataset_name = args.dataset_name_or_path.split("/")[-1]
if args.dataset_name == "conala":
args.max_new_tokens = 128
args.instruction_field = "nl"
args.reference_field = "cmd"
elif args.dataset_name == "codealpaca":
args.max_new_tokens = 512
args.instruction_field = "prompt"
args.reference_field = "completion"
else:
args.max_new_tokens = 1024
args.instruction_field = "question"
args.reference_field = "solutions"
knowledge_base_vectors = None
if args.use_icl:
examples = (
load_from_disk(args.dataset_name_or_path)["train"]
.shuffle(args.icl_seed)
.select(range(args.num_icl_examples))
)
chat_icl = []
for example in examples:
if args.dataset_name == "apps":
reference = json.loads(example[args.reference_field])[0]
else:
reference = example[args.reference_field]
chat_exemple = [
{"role": "user", "content": example[args.instruction_field]},
{"role": "assistant", "content": reference},
]
chat_icl += chat_exemple
def add_icl_prompt(example):
example["messages"] = chat_icl + example["messages"]
return example
dataset = dataset.map(add_icl_prompt, num_proc=16)
elif args.use_rag:
examples = load_from_disk(args.dataset_name_or_path)["train"]
knowledge_base = [
LangchainDocument(
page_content=sample[args.instruction_field],
metadata={"code": sample[args.reference_field]}
) for sample in tqdm(examples)
]
embedding_model = HuggingFaceEmbeddings(
model_name=args.rag_encoder_model,
multi_process=False,
model_kwargs={"device": "cuda"},
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
)
knowledge_base_vectors = FAISS.from_documents(
knowledge_base, embedding_model, distance_strategy=DistanceStrategy.COSINE
)
responses, init_gpu_memory, peak_gpu_memory, total_execution_time = (
generate(args, dataset, model, tokenizer, knowledge_base_vectors)
)
metrics = compute_metrics(args, responses, dataset)
metrics = {
**metrics,
"init_gpu_memory": f"{init_gpu_memory} MB",
"peak_gpu_memory": f"{peak_gpu_memory} MB",
"total_execution_time": f"{total_execution_time} seconds"
}
output_dir = (
f"{args.peft_checkpoint_path}/results" if args.peft_checkpoint_path else f"runs/{args.model_name}/results"
)
os.makedirs(output_dir, exist_ok=True)
file_suffix = f"{args.dataset_name}_t{args.temperature}"
if args.use_icl:
file_suffix += f"_icl_n{args.num_icl_examples}_s{args.icl_seed}"
elif args.use_rag:
file_suffix += f"_rag_k{args.rag_top_k}"
with open(f"{output_dir}/metrics_{file_suffix}.jsonl", "w") as fout:
json.dump(metrics, fout)
with open(f"{output_dir}/responses_{file_suffix}.jsonl", "w") as fout:
for response in responses:
json.dump({"response": response}, fout)
fout.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", type=str, default=None)
parser.add_argument("--peft_checkpoint_path", type=str, default=None)
parser.add_argument("--dataset_name_or_path", type=str, default=None)
parser.add_argument("--do_sample", default=True, type=bool, help="do sampling in generation")
parser.add_argument("--temperature", default=0.2, type=float, help="temperature for sampling")
parser.add_argument("--top_p", default=0.95, type=float, help="top p for sampling")
parser.add_argument("--top_k", default=0, type=float, help="top k for sampling")
parser.add_argument("--use_icl", action="store_true", default=False)
parser.add_argument("--icl_seed", type=int, default=42)
parser.add_argument("--num_icl_examples", type=int, default=3)
parser.add_argument("--use_rag", action="store_true", default=False)
parser.add_argument("--rag_encoder_model", default="thenlper/gte-small", type=str)
parser.add_argument("--rag_top_k", default=1, type=int)
args = parser.parse_args()
set_seed(42)
main(args)