-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
164 lines (126 loc) · 6.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from __future__ import print_function
from keras.models import Model
from keras.layers import Input, LSTM, Dense
from keras.models import model_from_json
import json
import numpy as np
import pdb
import os
class Train:
def __init__(self):
self.input_texts = []
self.target_texts = []
self._input_characters = set()
self._target_characters = set()
self._num_encoder_tokens = ''
self._num_decoder_tokens = ''
self._max_encoder_seq_length = ''
self._max_decoder_seq_length = ''
self._encoder_input_data = ''
self._decoder_input_data = ''
self._decoder_target_data = ''
self._input_token_index =''
self._target_token_index = ''
self._encoder_inputs = ''
self._encoder_states = ''
self._decoder_inputs = ''
self._decoder_lstm = ''
self._decoder_dense = ''
self._decoder_outputs = ''
self._model = ''
def vectorizeData(data_path, num_samples, self):
with open(data_path, 'r', encoding='iso-8859-1') as f:
lines = f.read().split('\n')
# input text, target_text분류하기
for line in lines[: min(num_samples, len(lines) - 1)]:
input_text, target_text = line.split('\t')
target_text = '\t' + target_text + '\n'
self._input_texts.append(input_text)
self._target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)
input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in self._input_texts])
max_decoder_seq_length = max([len(txt) for txt in self._target_texts])
print('Number of samples:', len(self._input_texts)) # sample 수
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print('Max sequence length for inputs:', max_encoder_seq_length)
print('Max sequence length for outputs:', max_decoder_seq_length)
self.createMatrix()
self.dictWithIndex()
# tuple형태로 zip이 반환한 값을 index값과 함께 추출
for i, (input_text, target_text) in enumerate(zip(self._input_texts, self._target_texts)):
for t, char in enumerate(input_text):
self._encoder_input_data[i, t, self._input_token_index[char]] = 1.
for t, char in enumerate(target_text):
# decoder_target_data is ahead of decoder_input_data by one timestep
self._decoder_input_data[i, t, self._target_token_index[char]] = 1.
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
self._decoder_target_data[i, t - 1, self._target_token_index[char]] = 1.
def createMatrix(self):
# 원소가 모두 0인 3차원 배열(높이, 행, 열)
self._encoder_input_data = np.zeros(
(len(self._input_texts), self._max_encoder_seq_length, self._num_encoder_tokens),
dtype=np.float16)
self._decoder_input_data = np.zeros(
(len(self._input_texts), self._max_decoder_seq_length, self._num_decoder_tokens),
dtype=np.float16)
self._decoder_target_data = np.zeros(
(len(self._input_texts), self._max_decoder_seq_length, self._num_decoder_tokens),
dtype=np.float16)
def dictWithIndex(self):
# key: char, value: i
self._input_token_index = dict( [(char, i) for i, char in enumerate(self._input_characters)] )
self._target_token_index = dict( [(char, i) for i, char in enumerate(self._target_characters)] )
# Define an input sequence and process it.
def relatedEncoder(latent_dim, self):
self._encoder_inputs = Input(shape=(None, self._num_encoder_tokens))
encoder_lstm = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder_lstm(self._encoder_inputs) # encoder=바로 위의 LSTM
# We discard `encoder_outputs` and only keep the states.
self._encoder_states = [state_h, state_c]
def relatedDecoder(latent_dim, self):
# Set up the decoder, using `encoder_states` as initial state.
self._decoder_inputs = Input(shape=(None, self._num_decoder_tokens))
self._decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
self._decoder_outputs, _, _ = self._decoder_lstm(self._decoder_inputs,
initial_state=self._encoder_states)
self._decoder_dense = Dense(self._num_decoder_tokens, activation='softmax')
self._decoder_outputs = self._decoder_dense(self._decoder_outputs)
def Model(self):
# define the model
self._model = Model([self._encoder_inputs, self._decoder_inputs], self._decoder_outputs)
self._model.compile(optimizer='adam', loss='categorical_crossentropy')
def train(data_path):
t = Train()
batch_size = 128 # Batch size for training.
epochs = 10 # Number of epochs to train for.
latent_dim = 512 # Latent dimensionality of the encoding space.
num_samples = 2000000 # Number of samples to train on.
t.vectorizeData(data_path, num_samples)
t.relatedEncoder(latent_dim)
t.relatedDecoder(latent_dim)
t.Model()
# Run training for 50 epochs and save model every 10 epochs
for iteration in range(1, 5):
print()
print('-' * 50)
print('Iteration', iteration)
t.model.fit([t.encoder_input_data, t.decoder_input_data], t.decoder_target_data,
batch_size=batch_size,
epochs=epochs,
validation_split=0.1)
model_json = t.model.to_json()
with open(str(iteration)+"model.json", "w") as outfile:
json.dump(model_json, outfile)
t.model.save_weights(str(iteration)+"model.h5")