-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdded_value1.R
258 lines (219 loc) · 12.4 KB
/
Added_value1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
library(Seurat)
library(scales)
library(ggplot2)
library(dplyr)
library(gridExtra)
library(openxlsx)
### define markers identified by on dataset
EC.list$`bm_stroma Scadden`@active.assay <- "RNA"
Idents(EC.list$`bm_stroma Scadden`)<-EC.list$`bm_stroma Scadden`$bootstrapped
#EC.list$`bm_stroma Scadden` <- subset(EC.list$`bm_stroma Scadden`, features = )
Scadden.EC.marker <- FindAllMarkers(EC.list$`bm_stroma Scadden`, only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25,assay = "SCT", slot = "scale.data")
[email protected] <- "integrated"
[email protected] <- as.factor(EC.integration$bootstrapped)
EC.markers <- FindAllMarkers(EC.integration,only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25)
[email protected] <- "integrated"
[email protected] <- as.factor(EC.integration$bootstrapped)
EC.markers <- FindAllMarkers(EC.integration,only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25)
overlap_matrix_EC_scadden <- matrix(nrow = 14, ncol = 4)
overlap_matrix_EC_scadden <- data.frame(overlap_matrix_EC_scadden)
colnames(overlap_matrix_EC_scadden) <-c("overlapped", "all EC", "single dataset", "cluster")
overlap_matrix_EC_scadden$cluster<- unique(EC.markers$cluster)
overlap_matrix_EC_scadden <- matrix(nrow = 14, ncol = 4)
overlap_matrix_EC_scadden <- data.frame(overlap_matrix_EC_scadden)
colnames(overlap_matrix_EC_scadden) <-c("overlapped", "all EC", "single dataset", "cluster")
overlap_matrix_EC_scadden$cluster<- unique(EC.markers$cluster)
for (i in 1:14){
cl <- overlap_matrix_EC_scadden$cluster[i]
overlap_matrix_EC_scadden[i, 1] <- length(intersect(Scadden.EC.marker$gene[Scadden.EC.marker$cluster==cl],EC.markers$gene[EC.markers$cluster==cl]))
overlap_matrix_EC_scadden[i, 2] <- sum(EC.markers$cluster==cl)
overlap_matrix_EC_scadden[i, 3] <- sum(Scadden.EC.marker$cluster==cl)
}
overlap_matrix_EC_scadden$shared_pt <- overlap_matrix_EC_scadden$overlapped/overlap_matrix_EC_scadden$`all EC`
overlap_matrix_EC_scadden$dataset <- "Scadden"
overlap_matrix_EC <- overlap_matrix_EC_scadden
EC.list$`VE-Cad`@active.assay <- "RNA"
Idents(EC.list$`VE-Cad`)<-EC.list$`VE-Cad`$bootstrapped
Aifantis.EC.marker <- FindAllMarkers(EC.list$`VE-Cad`, only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25,assay = "SCT", slot = "scale.data")
for (i in 1:14){
cl <- as.character(overlap_matrix_EC_scadden$cluster[i])
overlap_matrix_EC_scadden[i, 1] <- length(intersect(Aifantis.EC.marker$gene[Aifantis.EC.marker$cluster==cl],EC.markers$gene[EC.markers$cluster==cl]))
overlap_matrix_EC_scadden[i, 2] <- sum(EC.markers$cluster==cl)
overlap_matrix_EC_scadden[i, 3] <- sum(Aifantis.EC.marker$cluster==cl)
}
overlap_matrix_EC_scadden$shared_pt <- overlap_matrix_EC_scadden$overlapped/overlap_matrix_EC_scadden$`all EC`
overlap_matrix_EC_scadden$dataset <- "Aifantis"
overlap_matrix_EC <- rbind(overlap_matrix_EC, overlap_matrix_EC_scadden)
EC.list$`mouse sample NICHE`@active.assay <- "RNA"
Idents(EC.list$`mouse sample NICHE`)<-EC.list$`mouse sample NICHE`$bootstrapped
Pamplona.EC.marker <- FindAllMarkers(EC.list$`mouse sample NICHE`, only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25,assay = "SCT", slot = "scale.data")
for (i in 1:14){
cl <- overlap_matrix_EC_scadden$cluster[i]
overlap_matrix_EC_scadden[i, 1] <- length(intersect(Pamplona.EC.marker$gene[Pamplona.EC.marker$cluster==cl],EC.markers$gene[EC.markers$cluster==cl]))
overlap_matrix_EC_scadden[i, 2] <- sum(EC.markers$cluster==cl)
overlap_matrix_EC_scadden[i, 3] <- sum(Pamplona.EC.marker$cluster==cl)
}
overlap_matrix_EC_scadden$shared_pt <- overlap_matrix_EC_scadden$overlapped/overlap_matrix_EC_scadden$`all EC`
overlap_matrix_EC_scadden$dataset <- "Pamplona"
overlap_matrix_EC <- rbind(overlap_matrix_EC, overlap_matrix_EC_scadden)
### Added value 1 for MSC
MSC.list <- SplitObject(MSC.integration_sub,split.by = "orig.ident")
MSC.markers <- FindAllMarkers(MSC.integration_sub,only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
MSC.list$`bm_stroma Scadden`@active.assay <- "SCT"
Idents(MSC.list$`bm_stroma Scadden`)<-MSC.list$`bm_stroma Scadden`$bootstrapped
Scadden.MSC.marker <- FindAllMarkers(MSC.list$`bm_stroma Scadden`, only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25, verbose = F,assay = "SCT", slot = "scale.data")
[email protected] <- "SCT"
Idents(MSC.list$LEPR)<-MSC.list$LEPR$bootstrapped
Aifantis.MSC.marker <- FindAllMarkers(MSC.list$LEPR, only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25, verbose = F,assay = "SCT", slot = "scale.data")
MSC.list$`mouse sample NICHE`@active.assay <- "SCT"
Idents(MSC.list$`mouse sample NICHE`)<-MSC.list$`mouse sample NICHE`$bootstrapped
Pamplona.MSC.marker <- FindAllMarkers(MSC.list$`mouse sample NICHE`, only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25, verbose = F,assay = "SCT", slot = "scale.data")
overlap_matrix_EC_scadden <- matrix(nrow = 11, ncol = 4)
overlap_matrix_EC_scadden <- data.frame(overlap_matrix_EC_scadden)
colnames(overlap_matrix_EC_scadden) <-c("overlapped", "all EC", "single dataset", "cluster")
overlap_matrix_EC_scadden$cluster<- unique(MSC.markers.sub$cluster)
for (i in 1:11){
cl <- as.character(overlap_matrix_EC_scadden$cluster[i])
overlap_matrix_EC_scadden[i, 1] <- length(intersect(Scadden.MSC.marker$gene[Scadden.MSC.marker$cluster==cl],MSC.markers$gene[MSC.markers$cluster==cl]))
overlap_matrix_EC_scadden[i, 2] <- sum(MSC.markers$cluster==cl)
overlap_matrix_EC_scadden[i, 3] <- sum(Scadden.MSC.marker$cluster==cl)
}
overlap_matrix_EC_scadden$shared_pt <- overlap_matrix_EC_scadden$overlapped/overlap_matrix_EC_scadden$`all EC`
overlap_matrix_EC_scadden$dataset <- "Scadden"
overlap_matrix_MSC <- overlap_matrix_EC_scadden
for (i in 1:11){
cl <- as.character(overlap_matrix_EC_scadden$cluster[i])
overlap_matrix_EC_scadden[i, 1] <- length(intersect(Aifantis.MSC.marker$gene[Aifantis.MSC.marker$cluster==cl],MSC.markers$gene[MSC.markers$cluster==cl]))
overlap_matrix_EC_scadden[i, 2] <- sum(MSC.markers$cluster==cl)
overlap_matrix_EC_scadden[i, 3] <- sum(Aifantis.MSC.marker$cluster==cl)
}
overlap_matrix_EC_scadden$shared_pt <- overlap_matrix_EC_scadden$overlapped/overlap_matrix_EC_scadden$`all EC`
overlap_matrix_EC_scadden$dataset <- "Aifantis"
overlap_matrix_MSC <- rbind(overlap_matrix_MSC, overlap_matrix_EC_scadden)
for (i in 1:11){
cl <- as.character(overlap_matrix_EC_scadden$cluster[i])
overlap_matrix_EC_scadden[i, 1] <- length(intersect(Pamplona.MSC.marker$gene[Pamplona.MSC.marker$cluster==cl],MSC.markers$gene[MSC.markers$cluster==cl]))
overlap_matrix_EC_scadden[i, 2] <- sum(MSC.markers$cluster==cl)
overlap_matrix_EC_scadden[i, 3] <- sum(Pamplona.MSC.marker$cluster==cl)
}
overlap_matrix_EC_scadden$shared_pt <- overlap_matrix_EC_scadden$overlapped/overlap_matrix_EC_scadden$`all EC`
overlap_matrix_EC_scadden$dataset <- "Pamplona"
overlap_matrix_MSC <- rbind(overlap_matrix_MSC, overlap_matrix_EC_scadden)
####Venn Diagram#####
library(VennDiagram)
out.dir <- paste0("/added_value/point1/Venn_diagram_v2/EC/")
EC.markers.in <- EC.markers
for (i in unique(EC.markers.in$cluster)){
cat (i)
venn.diagram(
x = list(EC.markers.in$gene[EC.markers.in$cluster==i],Pamplona.EC.marker$gene[Pamplona.EC.marker$cluster==i],Scadden.EC.marker$gene[Scadden.EC.marker$cluster==i],Aifantis.EC.marker$gene[Aifantis.EC.marker$cluster==i]),
category.names = c("integrated" , "In-house", "Baryawana", "Tikhonova"),
filename = paste0(out.dir,"/",prefix, "cluster_",i, ".png"),
output=TRUE,
imagetype="png" ,
main = paste0("added_value1: Cluster ", i),
main.cex =1,
main.fontfamily = "Arial",
height = 2000,
width = 3000, resolution = 500,compression = "lzw",
lwd = 1,
col=c("wheat", 'light blue', 'light pink','#21908dff'),
fill = c(alpha("wheat",0.3), alpha('light blue',0.3), alpha('light pink',0.3),alpha('#21908dff',0.3)),
cex = 0.5,
fontfamily = "sans",cat.cex = 1 ,
cat.default.pos = "outer", cat.fontfamily = "sans",cat.col = c("wheat", 'light blue', 'light pink','#21908dff')
)
}
MSC.markers.in <- MSC.markers
out.dir <- paste0("~/added_value/point1/Venn_diagram_v2/MSC/")
for (i in unique(MSC.markers.in$cluster)){
cat (i)
venn.diagram(
x = list(MSC.markers.in$gene[MSC.markers.in$cluster==i],Pamplona.MSC.marker$gene[Pamplona.MSC.marker$cluster==i],Scadden.MSC.marker$gene[Scadden.MSC.marker$cluster==i],Aifantis.MSC.marker$gene[Aifantis.MSC.marker$cluster==i]),
category.names = c("integrated" , "In-house", "Baryawana", "Tikhonova"),
filename = paste0(out.dir,"/",prefix, "cluster_",i, ".png"),
output=TRUE,
imagetype="png" ,
main = paste0("added_value1: Cluster ", i),
main.cex =1,
main.fontfamily = "Arial",
height = 2000,
width = 3000, resolution = 500,compression = "lzw",
lwd = 1,
col=c("wheat", 'light blue', 'light pink','#21908dff'),
fill = c(alpha("wheat",0.3), alpha('light blue',0.3), alpha('light pink',0.3),alpha('#21908dff',0.3)),
cex = 0.5,
fontfamily = "sans",cat.cex = 1 ,
cat.default.pos = "outer", cat.fontfamily = "sans",cat.col = c("wheat", 'light blue', 'light pink','#21908dff')
)
}
#### False positive, False negative
overlap_matrix_EC$False_postive <- 1-(overlap_matrix_EC$overlapped/overlap_matrix_EC$`single dataset`)
overlap_matrix_EC$False_negative <- 1- overlap_matrix_EC$shared_pt
save(overlap_matrix_EC, overlap_matrix_MSC, file = "~/added_value1_overlapped_matixs.RData")
overlap_matrix_MSC$False_postive <- 1-(overlap_matrix_MSC$overlapped/overlap_matrix_MSC$`single dataset`)
overlap_matrix_MSC$False_negative <- 1- overlap_matrix_MSC$shared_pt
overlap_matrix_MSC$False_postive[is.na(overlap_matrix_MSC$False_postive)] <- 1
p1 <- ggplot(overlap_matrix_MSC,aes_string("cluster", "dataset")) +
theme_bw() +
geom_tile(aes(fill = False_negative), color='white') +
scale_fill_gradient(low = 'white', high = 'darkblue', space = 'Lab') +
#geom_text(aes(label = shared_pt), color='#93db69')+
theme(axis.text.x=element_text(angle=90),
axis.ticks=element_blank(),
axis.line=element_blank(),
panel.border=element_blank(),panel.grid.major = element_blank()
#panel.grid.major=element_line(color='#eeeeee')
)+scale_x_discrete(position = "top")
out.dir <- paste0("~/added_value/point1/")
prefix <- "20210404"
file_name <- paste0(out.dir,"/",prefix, "Added_value_1_MSC_False_negative.jpg")
jpeg(file=file_name, width = 7, height = 7*0.37, res= 300,units = "in", bg="transparent")
grid.arrange(p1,nrow=1)
dev.off()
file_name <- paste0(out.dir, prefix,"Added_value_1_MSC_False_negative.pdf")
pdf(file=file_name, width = 7, height = 7*0.37)
grid.arrange(p1,nrow=1)
dev.off()
p1 <- ggplot(overlap_matrix_EC,aes_string("cluster", "dataset")) +
theme_bw() +
geom_tile(aes(fill = False_negative), color='white') +
scale_fill_gradient(low = 'white', high = 'darkblue', space = 'Lab',na.value ='darkblue' ) +
#geom_text(aes(label = shared_pt), color='#93db69')+
theme(axis.text.x=element_text(angle=90),
axis.ticks=element_blank(),
axis.line=element_blank(),
panel.border=element_blank(),panel.grid.major = element_blank()
#panel.grid.major=element_line(color='#eeeeee')
)+scale_x_discrete(position = "top")
out.dir <- paste0("~//added_value/point1/")
prefix <- "20210404"
file_name <- paste0(out.dir,"/",prefix, "Added_value_1_EC_False_negative.jpg")
jpeg(file=file_name, width = 7, height = 7*0.37, res= 300,units = "in", bg="transparent")
grid.arrange(p1,nrow=1)
dev.off()
file_name <- paste0(out.dir, prefix,"Added_value_1_EC_False_negative.pdf")
pdf(file=file_name, width = 7, height = 7*0.37)
grid.arrange(p1,nrow=1)
dev.off()
p1 <- ggplot(overlap_matrix_EC,aes_string("cluster", "dataset")) +
theme_bw() +
geom_tile(aes(fill = False_postive), color='white') +
scale_fill_gradient(low = 'white', high = 'darkblue', space = 'Lab',na.value ='darkblue' ) +
#geom_text(aes(label = shared_pt), color='#93db69')+
theme(axis.text.x=element_text(angle=90),
axis.ticks=element_blank(),
axis.line=element_blank(),
panel.border=element_blank(),panel.grid.major = element_blank()
#panel.grid.major=element_line(color='#eeeeee')
)+scale_x_discrete(position = "top")
out.dir <- paste0("~/Figures/added_value/point1/")
prefix <- "20210404"
file_name <- paste0(out.dir,"/",prefix, "Added_value_1_EC_False_postivive.jpg")
jpeg(file=file_name, width = 7, height = 7*0.37, res= 300,units = "in", bg="transparent")
grid.arrange(p1,nrow=1)
dev.off()
file_name <- paste0(out.dir, prefix,"Added_value_1_EC_False_postivive.pdf")
pdf(file=file_name, width = 7, height = 7*0.37)
grid.arrange(p1,nrow=1)
dev.off()