-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain_cls.py
301 lines (211 loc) · 11 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import numpy as np
import torch
from torch.backends import cudnn
cudnn.enabled = True
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import torch.optim as optim
import voc12.data
from tool import pyutils, imutils, torchutils
import argparse
import importlib
import torch.nn.functional as F
import matplotlib.pyplot as plt
import math
from tqdm import tqdm
import collections
import random
import scipy.misc
import os
from PIL import Image
from tensorboardX import SummaryWriter
def compute_acc(pred_labels, gt_labels):
pred_correct_count = 0
pred_correct_list = []
for pred_label in pred_labels:
if pred_label in gt_labels:
pred_correct_count += 1
union = len(gt_labels) + len(pred_labels) - pred_correct_count
acc = round(pred_correct_count/union, 4)
return acc
def cls200_sum(y_200):
cls20_prob_sum_list = []
for rou in range(20):
subclass_prob_sum = sum(y_200[rou*k_cluster:rou*k_cluster+k_cluster])
cls20_prob_sum_list.append(subclass_prob_sum/10)
cls200_pred_max = np.where(np.array(cls20_prob_sum_list)>0.05)[0]
return cls200_pred_max
def get_img_path(img_name, dataset_path):
tmp = os.path.join(dataset_path, img_name + '.jpg')
return tmp
class Sub_Class_Dataset(Dataset):
def __init__(self, voc12_root, crop_size, round_nb, k_cluster, save_folder, test=False):
print('############################################## || k_{} / Round {} || ##############################################'.format(k_cluster, round_nb))
self.voc12_root = voc12_root
self.crop_size = crop_size
with open('{}/label/R{}_train_filename_list.txt'.format(save_folder, round_nb), 'r') as f:
self.filename = f.read().split('\n')
f.close()
self.filename = self.filename[:-1] # 16458
self.label = np.load('{}/label/R{}_train_label_200.npy'.format(save_folder, round_nb))
self.label = torch.from_numpy(self.label).float()
self.label_20 = np.load('{}/label/R{}_train_label_20.npy'.format(save_folder, round_nb)) # 16458
self.label_20 = torch.from_numpy(self.label_20).float()
print('=='*60)
print('Training Data: image: {} | 20 class label: {} | 200 class label: {}'.format(len(self.filename), self.label_20.shape, self.label.shape))
print('=='*60)
def __getitem__(self, index):
label_200 = self.label[index]
label_20 = self.label_20[index]
self.dataset_path = os.path.join(self.voc12_root, 'JPEGImages')
filename = self.filename[index]
img = Image.open(get_img_path(filename, self.dataset_path)).convert("RGB")
img = imutils.ResizeLong(img, 256, 512)
img = imutils.Flip(img)
img = imutils.ColorJitter(img)
img = np.array(img)
img = imutils.NNormalize(img)
img = imutils.Crop(img, self.crop_size)
img = img.transpose(2,0,1)
img = torch.from_numpy(img)
return img, label_20, label_200, filename
def __len__(self):
return len(self.filename)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=16, type=int)
parser.add_argument("--max_epoches", default=61, type=int)
parser.add_argument("--network", default="network.resnet38_cls", type=str)
parser.add_argument("--lr", default=0.01, type=float)
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument("--wt_dec", default=5e-4, type=float)
parser.add_argument("--weights", required=True, type=str, help="the path to the pretrained weight ")
parser.add_argument("--train_list", default="voc12/train_aug.txt", type=str)
parser.add_argument("--session_name", default="resnet_cls", type=str)
parser.add_argument("--crop_size", default=224, type=int)
parser.add_argument("--voc12_root", default="/home/julia/datasets/VOC2012", type=str, help="the path to the dataset folder")
parser.add_argument("--subcls_loss_weight", default="5", type=float, help="the weight multiply to the sub-category loss")
parser.add_argument("--round_nb", default="0", type=int, help="the round number of the training classifier, e.g., 1st round: round_nb=1, and so on")
parser.add_argument("--k_cluster", default="10", type=int, help="the number of the sub-category")
parser.add_argument("--save_folder", required=True, default="./save", type=str, help="the path to save the model")
args = parser.parse_args()
model = getattr(importlib.import_module(args.network), 'Net')(args.k_cluster, args.round_nb)
pyutils.Logger(args.session_name + '.log')
print(vars(args))
log_path = os.path.join(args.save_folder, 'log', 'R{}'.format(args.round_nb))
writer = SummaryWriter('{}'.format(log_path))
train_dataset = Sub_Class_Dataset(voc12_root=args.voc12_root,
crop_size = args.crop_size,
round_nb=args.round_nb,
k_cluster=args.k_cluster,
save_folder=args.save_folder)
train_data_loader = DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True)
max_step = (len(train_dataset) // args.batch_size) * args.max_epoches
param_groups = model.get_parameter_groups()
optimizer = torchutils.PolyOptimizer([
{'params': param_groups[0], 'lr': args.lr, 'weight_decay': args.wt_dec},
{'params': param_groups[1], 'lr': 2*args.lr, 'weight_decay': 0},
{'params': param_groups[2], 'lr': 10*args.lr, 'weight_decay': args.wt_dec},
{'params': param_groups[3], 'lr': 20*args.lr, 'weight_decay': 0}
], lr=args.lr, weight_decay=args.wt_dec, max_step=max_step)
if args.weights[-7:] == '.params':
assert args.network == "network.resnet38_cls"
import network.resnet38d
weights_dict = network.resnet38d.convert_mxnet_to_torch(args.weights)
elif args.weights[-11:] == '.caffemodel':
assert args.network == "network.vgg16_cls"
import network.vgg16d
weights_dict = network.vgg16d.convert_caffe_to_torch(args.weights)
else:
weights_dict = torch.load(args.weights)
model.load_state_dict(weights_dict, strict=False)
model = torch.nn.DataParallel(model).cuda()
model.train()
avg_meter = pyutils.AverageMeter('loss')
timer = pyutils.Timer("Session started: ")
parent_labels = np.load('./voc12/cls_labels.npy').tolist()
k_cluster = 10
step = 0
for ep in range(args.max_epoches):
ep_count = 0
ep_EM = 0
ep_acc = 0
ep_p_EM = 0
ep_p_acc = 0
ep_acc_vote = 0
cls20_ep_EM = 0
cls20_ep_acc = 0
for iter, (data, label_20, label_200, filename) in tqdm(enumerate(train_data_loader)):
img = data
label_20 = label_20.cuda(non_blocking=True)
label_200 = label_200.cuda(non_blocking=True)
img_name = filename
x_20, _, y_20, x_200, y_200 = model(img, args.round_nb)
# compute acc for 20 classes
cls20_prob = y_20.cpu().data.numpy()
cls20_gt = label_20.cpu().data.numpy()
for num, one in enumerate(cls20_prob):
ep_count += 1
pass_cls = np.where(one > 0.5)[0]
true_cls_20 = np.where(cls20_gt[num] == 1)[0]
if np.array_equal(pass_cls, true_cls_20) == True: # exact match
cls20_ep_EM += 1
acc = compute_acc(pass_cls, true_cls_20)
cls20_ep_acc += acc
# compute acc for 200 classes
tmp = y_200.cpu().data.numpy()
tmp_label = label_200.cpu().data.numpy()
for num, one in enumerate(tmp):
pass_cls = np.where(one>0.5)[0]
true_cls_200 = np.where(tmp_label[num] == 1)[0]
parent_cls = np.where(parent_labels[img_name[num]] == 1)[0]
cls200_pred_max = cls200_sum(one)
if np.array_equal(pass_cls, true_cls_200) == True:
ep_EM += 1
# cls200: acc for 200-->20 (sum)
acc = compute_acc(cls200_pred_max, parent_cls)
ep_acc += acc
# cls200: acc for 200-->20 (top 1)
pass_map_cls = np.unique([int(m/k_cluster) for m in np.where(one > 0.5)[0]])
if np.array_equal(pass_map_cls, parent_cls) == True:
ep_p_EM += 1
p_acc = compute_acc(pass_map_cls, parent_cls)
ep_p_acc += p_acc
avg_ep_EM = round(ep_EM/ep_count, 4)
avg_ep_acc = round(ep_acc/ep_count, 4)
avg_ep_p_EM = round(ep_p_EM/ep_count, 4)
avg_ep_p_acc = round(ep_p_acc/ep_count, 4)
avg_cls20_ep_EM = round(cls20_ep_EM/ep_count, 4)
avg_cls20_ep_acc = round(cls20_ep_acc/ep_count, 4)
cls_20_loss = F.multilabel_soft_margin_loss(x_20, label_20)
cls_200_loss = F.multilabel_soft_margin_loss(x_200, label_200)
loss = cls_20_loss + (args.subcls_loss_weight*cls_200_loss)
if iter%100 ==0:
print('k{} R{}| Ep:{} L:{} -20_LOSS:{} -200_LOSS:{} | -cls20:{} | -cls200_Top1:{} -Sum:{}'.format(args.k_cluster, args.round_nb, ep, round(loss.item(), 3), round(cls_20_loss.item(), 3), round(cls_200_loss.item(), 3), avg_cls20_ep_acc, avg_ep_p_acc, avg_ep_acc))
avg_meter.add({'loss': cls_200_loss.item()})
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.cuda.empty_cache()
writer.add_scalar('20 Classification Loss', cls_20_loss.item(), step)
writer.add_scalar('200 Classification Loss', cls_200_loss.item(), step)
writer.add_scalar('Total Loss', loss.item(), step)
writer.add_scalar('Cls20 Accuracy', avg_cls20_ep_acc, step)
writer.add_scalar('Cls200 Accuracy (Sum)', avg_ep_acc, step)
writer.add_scalar('Cls200 Accuracy (Top1)', avg_ep_p_acc, step)
step += 1
if (optimizer.global_step-1)%100 == 0:
timer.update_progress(optimizer.global_step / max_step)
print('Iter:%5d/%5d' % (optimizer.global_step - 1, max_step),
'Loss:%.4f' % (avg_meter.pop('loss')),
'imps:%.1f' % ((iter+1) * args.batch_size / timer.get_stage_elapsed()),
'Fin:%s' % (timer.str_est_finish()),
'lr: %.4f' % (optimizer.param_groups[0]['lr']), flush=True)
if ep % 10 == 0:
torch.save(model.module.state_dict(), '{}/weight/k{}_R{}_'.format(args.save_folder, args.k_cluster, args.round_nb) + args.session_name + '_ep{}.pth'.format(ep))
print('Loss: {} achieves the lowest one => Epoch {} weights are saved!'.format(loss, ep))