forked from DiffPoseTalk/DiffPoseTalk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_se.py
182 lines (143 loc) · 6.38 KB
/
main_se.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
from collections import deque
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from colorama import Fore, Back, Style
from tensorboardX import SummaryWriter
from torch.utils import data
from tqdm import tqdm
import options.se as options
import utils
from data import LmdbDatasetForSE, infinite_data_loader
from models import StyleEncoder
def train(args, model: StyleEncoder, train_loader, val_loader, optimizer, save_dir,
writer=None):
device = model.device
save_dir.mkdir(parents=True, exist_ok=True)
model.encoder.train()
data_loader = infinite_data_loader(train_loader)
loss_log = deque(maxlen=args.log_smooth_win)
pbar = tqdm(range(args.max_iter + 1), dynamic_ncols=True)
optimizer.zero_grad()
for it in pbar:
# Load data
coef_pair = next(data_loader)
coef_pair = [coef.to(device) for coef in coef_pair]
# Forward
feat_a = model(coef_pair[0])
feat_b = model(coef_pair[1])
loss = utils.nt_xent_loss(feat_a, feat_b, args.temperature)
# Backward
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Logging
loss_log.append(loss.item())
description = f'Train loss: [{np.mean(loss_log):.3e}]'
pbar.set_description(description)
if it % args.log_iter == 0 and writer is not None:
# write to tensorboard
writer.add_scalar('train/loss', np.mean(loss_log), it)
# Validation
if (it % args.val_iter == 0 and it != 0) or it == args.max_iter:
test(args, model, val_loader, it, 200, 'val', writer)
# save model
if (it % args.save_iter == 0 and it != 0) or it == args.max_iter:
torch.save({
'args': args,
'encoder': model.encoder.state_dict(),
'iter': it,
}, save_dir / f'iter_{it:07}.pt')
@torch.no_grad()
def test(args, model: StyleEncoder, test_loader, current_iter, n_rounds=10, mode='val',
writer=None):
is_training = model.encoder.training
device = model.device
model.encoder.eval()
loss_log = []
for test_round in range(n_rounds):
for coef_pair in test_loader:
# Load data
coef_pair = [coef.to(device) for coef in coef_pair]
# Forward
feat_a = model(coef_pair[0])
feat_b = model(coef_pair[1])
loss = utils.nt_xent_loss(feat_a, feat_b, args.temperature)
# Logging
loss_log.append(loss.item())
description = f'(Iter {current_iter:>6}) {mode} loss: [{np.mean(loss_log):.3e}]'
print(description)
if writer is not None:
# write to tensorboard
writer.add_scalar(f'{mode}/loss', np.mean(loss_log), current_iter)
if is_training:
model.encoder.train()
def main(args, option_text=None):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load data
data_root = Path(args.data_root)
coef_stats_file: Path = args.stats_file
if not coef_stats_file.is_absolute():
coef_stats_file = data_root / coef_stats_file
if args.mode == 'train':
# Build model
model = StyleEncoder(args).to(device)
# Dataset
train_dataset = LmdbDatasetForSE(data_root, args.data_root / 'train.txt', coef_stats_file, args.fps,
args.n_motions,
rot_repr=args.rot_repr, no_head_pose=args.no_head_pose)
val_dataset = LmdbDatasetForSE(data_root, args.data_root / 'val.txt', coef_stats_file, args.fps, args.n_motions,
rot_repr=args.rot_repr, no_head_pose=args.no_head_pose)
train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True, drop_last=True,
persistent_workers=True)
val_loader = data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, drop_last=True)
# Logging
exp_dir = Path('experiments/SE') / f'{args.exp_name}-{datetime.now().strftime("%y%m%d_%H%M%S")}'
log_dir = exp_dir / 'logs'
log_dir.mkdir(parents=True, exist_ok=True)
writer = SummaryWriter(str(log_dir))
if option_text is not None:
with open(log_dir / 'options.log', 'w') as f:
f.write(option_text)
writer.add_text('options', option_text)
print(Back.RED + Fore.YELLOW + Style.BRIGHT + exp_dir.name + Style.RESET_ALL)
print('model parameters: ', utils.count_parameters(model))
# Train the model
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
train(args, model, train_loader, val_loader, optimizer, exp_dir / 'checkpoints', writer)
else:
# Build model
checkpoint_path, _ = utils.get_model_path(args.exp_name, args.iter, 'SE')
model_data = torch.load(checkpoint_path, map_location=device)
model_args = model_data['args']
model = StyleEncoder(model_args).to(device)
model.encoder.load_state_dict(model_data['encoder'], strict=False)
model.eval()
# Dataset
test_dataset = LmdbDatasetForSE(data_root, args.data_root / 'test.txt', coef_stats_file, args.fps,
args.n_motions,
rot_repr=args.rot_repr, no_head_pose=args.no_head_pose)
test_loader = data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers)
# Test the model
test(args, model, test_loader, args.iter, 100, 'test')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'])
parser.add_argument('--iter', type=int, default=100000, help='iteration to test')
# Model
options.add_model_options(parser)
# Dataset
options.add_data_options(parser)
# Training
options.add_training_options(parser)
args = parser.parse_args()
if args.mode == 'train':
option_text = utils.get_option_text(args, parser)
else:
option_text = None
main(args, option_text)