diff --git a/src/LimitedLDLFactorizations.jl b/src/LimitedLDLFactorizations.jl index 32d845b..d2fc0e7 100644 --- a/src/LimitedLDLFactorizations.jl +++ b/src/LimitedLDLFactorizations.jl @@ -52,6 +52,8 @@ Compute the limited-memory LDLᵀ factorization of A without pivoting. gradually increased from this initial value until success. - `droptol::Tv=Tv(0)`: to further sparsify `L`, all elements with magnitude smaller than `droptol` are dropped. +- `β=0`: Standard (0), Relaxed (0 < β < 1) or Modified (1) factorization. +- `row_relax::Bool=true`: row / col relaxation switch. """ function lldl(A::SparseMatrixCSC{Tv, Ti}; kwargs...) where {Tv <: Number, Ti <: Integer} lldl(tril(A, -1), diag(A), amd(A); kwargs...) @@ -84,11 +86,14 @@ function lldl( memory::Int = 0, α::Tv = Tv(0), droptol::Tv = Tv(0), + β::Number = 0, + row_relax::Bool = true, ) where {Tv <: Number, Ti <: Integer} memory < 0 && error("limited-memory parameter must be nonnegative") n = size(T, 1) n != size(T, 2) && error("input matrix must be square") n != length(adiag) && error("inconsistent size of diagonal") + 0 <= β <= 1 || error("invalid relaxation factor β=$β") nnzT = nnz(T) np = n * memory @@ -202,11 +207,14 @@ function lldl( rowind, colptr, w, + wa1, # scratch indr, indf, - list, + list; memory = Ti(memory), droptol = droptol, + β = Tv(β), + row_relax = row_relax, ) # Increase shift if the factorization didn't succeed. @@ -237,11 +245,14 @@ function attempt_lldl!( rowind::Vector{Ti}, colptr::Vector{Ti}, w::Vector{Tv}, + wa1::Vector{Tv}, indr::Vector{Ti}, indf::Vector{Ti}, list::Vector{Ti}; memory::Ti = 0, droptol::Tv = Tv(0), + β::Tv = Tv(0), + row_relax::Bool = true, ) where {Ti <: Integer, Tv <: Number} n = size(d, 1) np = n * memory @@ -342,6 +353,7 @@ function attempt_lldl!( new_col_start = colptr[col] new_col_end = new_col_start + nz_to_keep - one(Ti) l = new_col_start + fill!(wa1, 0) @inbounds @simd for k = new_col_start:new_col_end k1 = indr[kth + k - new_col_start] val = w[k1] @@ -350,15 +362,23 @@ function attempt_lldl!( lvals[l] = val rowind[l] = k1 l += one(Ti) + elseif β > 0 + wa1[row_relax ? k1 : k] += val end end new_col_end = l - one(Ti) # Variant II of diagonal elements update. - @inbounds @simd for k = kth:nzcol - k1 = indr[k] - wk1 = w[k1] - d[k1] -= dcol * wk1 * wk1 + if β > 0 + @inbounds @simd for k = kth:nzcol + k1 = indr[k] + d[k1] -= dcol * w[k1]^2 + β * wa1[row_relax ? k1 : k] + end + else + @inbounds @simd for k = kth:nzcol + k1 = indr[k] + d[k1] -= dcol * w[k1]^2 + end end if new_col_start < new_col_end diff --git a/test/runtests.jl b/test/runtests.jl index 2dcfeb2..1a981ac 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -29,23 +29,25 @@ using AMD, Metis, LimitedLDLFactorizations @test nnzl5 ≥ nnzl0 @test LLDL.α == 0 - LLDL = lldl(A, perm, memory = 10) - @test nnz(LLDL) ≥ nnzl5 - @test LLDL.α == 0 - L = LLDL.L + I - @test norm(L * diagm(0 => LLDL.D) * L' - A[perm, perm]) ≤ sqrt(eps()) * norm(A) - - sol = ones(A.n) - b = A * sol - x = LLDL \ b - @test x ≈ sol - - y = similar(b) - ldiv!(y, LLDL, b) - @test y ≈ sol - - ldiv!(LLDL, b) - @test b ≈ sol + for β ∈ (0., .5, 1.) + LLDL = lldl(A, perm, memory = 10, β = β) + @test nnz(LLDL) ≥ nnzl5 + @test LLDL.α == 0 + L = LLDL.L + I + @test norm(L * diagm(0 => LLDL.D) * L' - A[perm, perm]) ≤ sqrt(eps()) * norm(A) + + sol = ones(A.n) + b = A * sol + x = LLDL \ b + @test x ≈ sol + + y = similar(b) + ldiv!(y, LLDL, b) + @test y ≈ sol + + ldiv!(LLDL, b) + @test b ≈ sol + end end end