forked from KhronosGroup/Vulkan-Samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathray_tracing_reflection.cpp
1001 lines (851 loc) · 49.8 KB
/
ray_tracing_reflection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2014-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
/*
* More complex example for hardware accelerated ray tracing using VK_KHR_ray_tracing_pipeline and VK_KHR_acceleration_structure
*/
#define TINYOBJLOADER_IMPLEMENTATION
#include "ray_tracing_reflection.h"
#include <glm/gtc/type_ptr.hpp>
struct ObjPlane : ObjModelCpu
{
ObjPlane()
{
vertices = {
{{+1, 0, +1}, {0, 1, 0}},
{{-1, 0, +1}, {0, 1, 0}},
{{+1, 0, -1}, {0, 1, 0}},
{{-1, 0, -1}, {0, 1, 0}},
};
indices = {0, 1, 2, 1, 2, 3};
mat_index = {0, 0};
}
};
struct ObjCube : ObjModelCpu
{
ObjCube()
{
vertices = {
{{+0.5f, +0.5f, +0.5f}, {+0.f, +1.f, +0.f}}, // Top
{{-0.5f, +0.5f, +0.5f}, {+0.f, +1.f, +0.f}},
{{+0.5f, +0.5f, -0.5f}, {+0.f, +1.f, +0.f}},
{{-0.5f, +0.5f, -0.5f}, {+0.f, +1.f, +0.f}},
{{+0.5f, -0.5f, +0.5f}, {+0.f, -1.f, +0.f}}, // Bottom
{{-0.5f, -0.5f, +0.5f}, {+0.f, -1.f, +0.f}},
{{+0.5f, -0.5f, -0.5f}, {+0.f, -1.f, +0.f}},
{{-0.5f, -0.5f, -0.5f}, {+0.f, -1.f, +0.f}},
{{+0.5f, +0.5f, +0.5f}, {+1.f, +0.f, +0.f}}, // Right
{{+0.5f, +0.5f, -0.5f}, {+1.f, +0.f, +0.f}},
{{+0.5f, -0.5f, -0.5f}, {+1.f, +0.f, +0.f}},
{{+0.5f, -0.5f, +0.5f}, {+1.f, +0.f, +0.f}},
{{-0.5f, +0.5f, +0.5f}, {-1.f, +0.f, +0.f}}, // left
{{-0.5f, +0.5f, -0.5f}, {-1.f, +0.f, +0.f}},
{{-0.5f, -0.5f, -0.5f}, {-1.f, +0.f, +0.f}},
{{-0.5f, -0.5f, +0.5f}, {-1.f, +0.f, +0.f}},
{{-0.5f, +0.5f, +0.5f}, {+0.f, +0.f, +1.f}}, // front
{{+0.5f, +0.5f, +0.5f}, {+0.f, +0.f, +1.f}},
{{+0.5f, -0.5f, +0.5f}, {+0.f, +0.f, +1.f}},
{{-0.5f, -0.5f, +0.5f}, {+0.f, +0.f, +1.f}},
{{-0.5f, +0.5f, -0.5f}, {+0.f, +0.f, -1.f}}, // back
{{+0.5f, +0.5f, -0.5f}, {+0.f, +0.f, -1.f}},
{{+0.5f, -0.5f, -0.5f}, {+0.f, +0.f, -1.f}},
{{-0.5f, -0.5f, -0.5f}, {+0.f, +0.f, -1.f}},
};
indices = {
0, 1, 2, 1, 2, 3, /*top*/
4, 5, 6, 5, 6, 7, /*bottom*/
8, 9, 10, 8, 10, 11, /*right*/
12, 13, 14, 12, 14, 15, /*left*/
16, 17, 18, 16, 18, 19, /*front*/
20, 21, 22, 20, 22, 23, /*back*/
};
mat_index = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5};
}
};
RaytracingReflection::RaytracingReflection()
{
title = "Hardware accelerated ray tracing";
set_api_version(VK_API_VERSION_1_2);
// Ray tracing related extensions required by this sample
add_device_extension(VK_KHR_ACCELERATION_STRUCTURE_EXTENSION_NAME);
add_device_extension(VK_KHR_RAY_TRACING_PIPELINE_EXTENSION_NAME);
// Required by VK_KHR_acceleration_structure
add_device_extension(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
add_device_extension(VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME);
}
RaytracingReflection::~RaytracingReflection()
{
if (device)
{
vkDestroyPipeline(get_device().get_handle(), pipeline, nullptr);
vkDestroyPipelineLayout(get_device().get_handle(), pipeline_layout, nullptr);
vkDestroyDescriptorSetLayout(get_device().get_handle(), descriptor_set_layout, nullptr);
vkDestroyImageView(get_device().get_handle(), storage_image.view, nullptr);
vkDestroyImage(get_device().get_handle(), storage_image.image, nullptr);
vkFreeMemory(get_device().get_handle(), storage_image.memory, nullptr);
delete_acceleration_structure(top_level_acceleration_structure);
for (auto &b : bottom_level_acceleration_structure)
{
delete_acceleration_structure(b);
}
for (auto &obj : obj_models)
{
obj.vertex_buffer.reset();
obj.index_buffer.reset();
obj.mat_color_buffer.reset();
obj.mat_index_buffer.reset();
}
ubo.reset();
}
}
/*
Enable extension features required by this sample
These are passed to device creation via a pNext structure chain
*/
void RaytracingReflection::request_gpu_features(vkb::PhysicalDevice &gpu)
{
// The request is filling with the capabilities (all on by default)
auto &vulkan12_features = gpu.request_extension_features<VkPhysicalDeviceVulkan12Features>(VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
auto &vulkan11_features = gpu.request_extension_features<VkPhysicalDeviceVulkan11Features>(VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
auto &ray_tracing_features = gpu.request_extension_features<VkPhysicalDeviceRayTracingPipelineFeaturesKHR>(VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR);
auto &acceleration_structure_features = gpu.request_extension_features<VkPhysicalDeviceAccelerationStructureFeaturesKHR>(VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR);
// Enabling all Vulkan features (Int64)
gpu.get_mutable_requested_features() = gpu.get_features();
}
/*
Set up a storage image that the ray generation shader will be writing to
*/
void RaytracingReflection::create_storage_image()
{
storage_image.width = width;
storage_image.height = height;
VkImageCreateInfo image{VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO};
image.imageType = VK_IMAGE_TYPE_2D;
image.format = VK_FORMAT_B8G8R8A8_UNORM;
image.extent.width = storage_image.width;
image.extent.height = storage_image.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
image.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK(vkCreateImage(get_device().get_handle(), &image, nullptr, &storage_image.image));
VkMemoryRequirements memory_requirements;
vkGetImageMemoryRequirements(get_device().get_handle(), storage_image.image, &memory_requirements);
VkMemoryAllocateInfo memory_allocate_info{VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO};
memory_allocate_info.allocationSize = memory_requirements.size;
memory_allocate_info.memoryTypeIndex = get_device().get_memory_type(memory_requirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK(vkAllocateMemory(get_device().get_handle(), &memory_allocate_info, nullptr, &storage_image.memory));
VK_CHECK(vkBindImageMemory(get_device().get_handle(), storage_image.image, storage_image.memory, 0));
VkImageViewCreateInfo color_image_view{VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO};
color_image_view.viewType = VK_IMAGE_VIEW_TYPE_2D;
color_image_view.format = VK_FORMAT_B8G8R8A8_UNORM;
color_image_view.subresourceRange = {};
color_image_view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
color_image_view.subresourceRange.baseMipLevel = 0;
color_image_view.subresourceRange.levelCount = 1;
color_image_view.subresourceRange.baseArrayLayer = 0;
color_image_view.subresourceRange.layerCount = 1;
color_image_view.image = storage_image.image;
VK_CHECK(vkCreateImageView(get_device().get_handle(), &color_image_view, nullptr, &storage_image.view));
VkCommandBuffer command_buffer = get_device().create_command_buffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkb::set_image_layout(command_buffer, storage_image.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_GENERAL,
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1});
get_device().flush_command_buffer(command_buffer, queue);
}
/*
Create the bottom level acceleration structure that contains the scene's geometry (triangles)
*/
void RaytracingReflection::create_bottom_level_acceleration_structure(ObjModelGpu &obj_model)
{
// Note that the buffer usage flags for buffers consumed by the bottom level acceleration structure require special flags
const VkBufferUsageFlags buffer_usage_flags = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
// Setup a single transformation matrix that can be used to transform the whole geometry for a single bottom level acceleration structure
VkTransformMatrixKHR transform_matrix = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f};
std::unique_ptr<vkb::core::Buffer> transform_matrix_buffer = std::make_unique<vkb::core::Buffer>(get_device(), sizeof(transform_matrix), buffer_usage_flags, VMA_MEMORY_USAGE_CPU_TO_GPU);
transform_matrix_buffer->update(&transform_matrix, sizeof(transform_matrix));
VkDeviceOrHostAddressConstKHR vertex_data_device_address{};
VkDeviceOrHostAddressConstKHR index_data_device_address{};
VkDeviceOrHostAddressConstKHR transform_matrix_device_address{};
vertex_data_device_address.deviceAddress = obj_model.vertex_buffer->get_device_address();
index_data_device_address.deviceAddress = obj_model.index_buffer->get_device_address();
transform_matrix_device_address.deviceAddress = transform_matrix_buffer->get_device_address();
VkAccelerationStructureGeometryTrianglesDataKHR triangles{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR};
triangles.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR;
triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
triangles.vertexData = vertex_data_device_address;
triangles.maxVertex = obj_model.nb_vertices;
triangles.vertexStride = sizeof(ObjVertex);
triangles.indexType = VK_INDEX_TYPE_UINT32;
triangles.indexData = index_data_device_address;
triangles.transformData = transform_matrix_device_address;
// The bottom level acceleration structure contains one set of triangles as the input geometry
VkAccelerationStructureGeometryKHR acceleration_structure_geometry{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR};
acceleration_structure_geometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
acceleration_structure_geometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
acceleration_structure_geometry.geometry.triangles = triangles;
// Get the size requirements for buffers involved in the acceleration structure build process
VkAccelerationStructureBuildGeometryInfoKHR acceleration_structure_build_geometry_info{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR};
acceleration_structure_build_geometry_info.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
acceleration_structure_build_geometry_info.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
acceleration_structure_build_geometry_info.geometryCount = 1;
acceleration_structure_build_geometry_info.pGeometries = &acceleration_structure_geometry;
const uint32_t triangle_count = obj_model.nb_indices / 3;
VkAccelerationStructureBuildSizesInfoKHR acceleration_structure_build_sizes_info{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR};
vkGetAccelerationStructureBuildSizesKHR(device->get_handle(),
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&acceleration_structure_build_geometry_info,
&triangle_count,
&acceleration_structure_build_sizes_info);
// Create a buffer to hold the acceleration structure
AccelerationStructure blas;
blas.buffer = std::make_unique<vkb::core::Buffer>(get_device(), acceleration_structure_build_sizes_info.accelerationStructureSize, VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR, VMA_MEMORY_USAGE_GPU_ONLY);
// Create the acceleration structure
VkAccelerationStructureCreateInfoKHR acceleration_structure_create_info{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR};
acceleration_structure_create_info.buffer = blas.buffer->get_handle();
acceleration_structure_create_info.size = acceleration_structure_build_sizes_info.accelerationStructureSize;
acceleration_structure_create_info.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
vkCreateAccelerationStructureKHR(device->get_handle(), &acceleration_structure_create_info, nullptr, &blas.handle);
// The actual build process starts here
// Create a scratch buffer as a temporary storage for the acceleration structure build
std::unique_ptr<vkb::core::Buffer> sc_buffer;
sc_buffer = std::make_unique<vkb::core::Buffer>(get_device(), acceleration_structure_build_sizes_info.buildScratchSize,
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VMA_MEMORY_USAGE_CPU_TO_GPU);
VkAccelerationStructureBuildGeometryInfoKHR acceleration_build_geometry_info{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR};
acceleration_build_geometry_info.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
acceleration_build_geometry_info.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
acceleration_build_geometry_info.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
acceleration_build_geometry_info.dstAccelerationStructure = blas.handle;
acceleration_build_geometry_info.geometryCount = 1;
acceleration_build_geometry_info.pGeometries = &acceleration_structure_geometry;
acceleration_build_geometry_info.scratchData.deviceAddress = sc_buffer->get_device_address();
VkAccelerationStructureBuildRangeInfoKHR acceleration_structure_build_range_info;
acceleration_structure_build_range_info.primitiveCount = triangle_count;
acceleration_structure_build_range_info.primitiveOffset = 0;
acceleration_structure_build_range_info.firstVertex = 0;
acceleration_structure_build_range_info.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR *> acceleration_build_structure_range_infos = {&acceleration_structure_build_range_info};
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer command_buffer = get_device().create_command_buffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(command_buffer,
1,
&acceleration_build_geometry_info,
acceleration_build_structure_range_infos.data());
get_device().flush_command_buffer(command_buffer, queue);
//delete_scratch_buffer(scratch_buffer);
sc_buffer.reset();
// Store the blas to be re-used as instance
bottom_level_acceleration_structure.push_back(std::move(blas));
}
/*
Create the top level acceleration structure containing geometry instances of the bottom level acceleration structure(s)
*/
void RaytracingReflection::create_top_level_acceleration_structure(std::vector<VkAccelerationStructureInstanceKHR> &blas_instances)
{
std::unique_ptr<vkb::core::Buffer> instances_buffer = std::make_unique<vkb::core::Buffer>(get_device(),
sizeof(VkAccelerationStructureInstanceKHR) * blas_instances.size(),
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
VMA_MEMORY_USAGE_CPU_TO_GPU);
instances_buffer->update(blas_instances.data(), sizeof(VkAccelerationStructureInstanceKHR) * blas_instances.size());
VkDeviceOrHostAddressConstKHR instance_data_device_address{};
instance_data_device_address.deviceAddress = instances_buffer->get_device_address();
// The top level acceleration structure contains (bottom level) instance as the input geometry
VkAccelerationStructureGeometryKHR acceleration_structure_geometry{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR};
acceleration_structure_geometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
acceleration_structure_geometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
acceleration_structure_geometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
acceleration_structure_geometry.geometry.instances.arrayOfPointers = VK_FALSE;
acceleration_structure_geometry.geometry.instances.data = instance_data_device_address;
// Get the size requirements for buffers involved in the acceleration structure build process
VkAccelerationStructureBuildGeometryInfoKHR acceleration_structure_build_geometry_info{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR};
acceleration_structure_build_geometry_info.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
acceleration_structure_build_geometry_info.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
acceleration_structure_build_geometry_info.geometryCount = 1;
acceleration_structure_build_geometry_info.pGeometries = &acceleration_structure_geometry;
const auto primitive_count = static_cast<uint32_t>(blas_instances.size());
VkAccelerationStructureBuildSizesInfoKHR acceleration_structure_build_sizes_info{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR};
vkGetAccelerationStructureBuildSizesKHR(
device->get_handle(), VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&acceleration_structure_build_geometry_info,
&primitive_count,
&acceleration_structure_build_sizes_info);
// Create a buffer to hold the acceleration structure
top_level_acceleration_structure.buffer = std::make_unique<vkb::core::Buffer>(
get_device(),
acceleration_structure_build_sizes_info.accelerationStructureSize,
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR,
VMA_MEMORY_USAGE_GPU_ONLY);
// Create the acceleration structure
VkAccelerationStructureCreateInfoKHR acceleration_structure_create_info{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR};
acceleration_structure_create_info.buffer = top_level_acceleration_structure.buffer->get_handle();
acceleration_structure_create_info.size = acceleration_structure_build_sizes_info.accelerationStructureSize;
acceleration_structure_create_info.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
vkCreateAccelerationStructureKHR(device->get_handle(), &acceleration_structure_create_info, nullptr, &top_level_acceleration_structure.handle);
// The actual build process starts here
// Create a scratch buffer as a temporary storage for the acceleration structure build
std::unique_ptr<vkb::core::Buffer> sc_buffer;
sc_buffer = std::make_unique<vkb::core::Buffer>(get_device(), acceleration_structure_build_sizes_info.buildScratchSize,
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VMA_MEMORY_USAGE_CPU_TO_GPU);
VkAccelerationStructureBuildGeometryInfoKHR acceleration_build_geometry_info{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR};
acceleration_build_geometry_info.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
acceleration_build_geometry_info.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
acceleration_build_geometry_info.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
acceleration_build_geometry_info.dstAccelerationStructure = top_level_acceleration_structure.handle;
acceleration_build_geometry_info.geometryCount = 1;
acceleration_build_geometry_info.pGeometries = &acceleration_structure_geometry;
acceleration_build_geometry_info.scratchData.deviceAddress = sc_buffer->get_device_address();
VkAccelerationStructureBuildRangeInfoKHR acceleration_structure_build_range_info;
acceleration_structure_build_range_info.primitiveCount = primitive_count;
acceleration_structure_build_range_info.primitiveOffset = 0;
acceleration_structure_build_range_info.firstVertex = 0;
acceleration_structure_build_range_info.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR *> acceleration_build_structure_range_infos = {&acceleration_structure_build_range_info};
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer command_buffer = get_device().create_command_buffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
command_buffer,
1,
&acceleration_build_geometry_info,
acceleration_build_structure_range_infos.data());
get_device().flush_command_buffer(command_buffer, queue);
//delete_scratch_buffer(scratch_buffer);
sc_buffer.reset();
}
inline uint32_t aligned_size(uint32_t value, uint32_t alignment)
{
return (value + alignment - 1) & ~(alignment - 1);
}
/*
Create the GPU representation of the model
*/
void RaytracingReflection::create_model(ObjModelCpu &obj, const std::vector<ObjMaterial> &materials)
{
ObjModelGpu model;
model.nb_indices = static_cast<uint32_t>(obj.indices.size());
model.nb_vertices = static_cast<uint32_t>(obj.vertices.size());
auto vertex_buffer_size = obj.vertices.size() * sizeof(ObjVertex);
auto index_buffer_size = obj.indices.size() * sizeof(uint32_t);
auto mat_index_buffer_size = obj.mat_index.size() * sizeof(int32_t);
auto mat_buffer_size = materials.size() * sizeof(ObjMaterial);
// Making sure the material triangle index don't exceed the number of materials
auto max_index = static_cast<int32_t>(materials.size() - 1);
std::vector<int32_t> mat_index(obj.mat_index.size());
for (auto i = 0; i < obj.mat_index.size(); i++)
mat_index[i] = std::min(max_index, obj.mat_index[i]);
// Note that the buffer usage flags for buffers consumed by the bottom level acceleration structure require special flags
VkBufferUsageFlags buffer_usage_flags = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
model.vertex_buffer = std::make_unique<vkb::core::Buffer>(get_device(), vertex_buffer_size, buffer_usage_flags, VMA_MEMORY_USAGE_CPU_TO_GPU);
model.vertex_buffer->update(obj.vertices.data(), vertex_buffer_size);
// Acceleration structure flag is not needed for the rest
buffer_usage_flags = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
model.index_buffer = std::make_unique<vkb::core::Buffer>(get_device(), index_buffer_size, buffer_usage_flags, VMA_MEMORY_USAGE_CPU_TO_GPU);
model.index_buffer->update(obj.indices.data(), index_buffer_size);
model.mat_index_buffer = std::make_unique<vkb::core::Buffer>(get_device(), mat_index_buffer_size, buffer_usage_flags, VMA_MEMORY_USAGE_CPU_TO_GPU);
model.mat_index_buffer->update(mat_index.data(), mat_index_buffer_size);
model.mat_color_buffer = std::make_unique<vkb::core::Buffer>(get_device(), mat_buffer_size, buffer_usage_flags, VMA_MEMORY_USAGE_CPU_TO_GPU);
model.mat_color_buffer->update(reinterpret_cast<const uint8_t *>(materials.data()), mat_buffer_size);
obj_models.push_back(std::move(model));
}
auto RaytracingReflection::create_blas_instance(uint32_t blas_id, glm::mat4 &mat)
{
VkTransformMatrixKHR transform_matrix;
glm::mat3x4 rtxT = glm::transpose(mat);
memcpy(&transform_matrix, glm::value_ptr(rtxT), sizeof(VkTransformMatrixKHR));
AccelerationStructure &blas = bottom_level_acceleration_structure[blas_id];
// Get the bottom acceleration structure's handle, which will be used during the top level acceleration build
VkAccelerationStructureDeviceAddressInfoKHR acceleration_device_address_info{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR};
acceleration_device_address_info.accelerationStructure = blas.handle;
auto device_address = vkGetAccelerationStructureDeviceAddressKHR(device->get_handle(), &acceleration_device_address_info);
VkAccelerationStructureInstanceKHR blas_instance{};
blas_instance.transform = transform_matrix;
blas_instance.instanceCustomIndex = blas_id;
blas_instance.mask = 0xFF;
blas_instance.instanceShaderBindingTableRecordOffset = 0;
blas_instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
blas_instance.accelerationStructureReference = device_address;
return blas_instance;
}
/*
Create a buffer holding the address of model buffers (buffer reference)
*/
void RaytracingReflection::create_buffer_references()
{
// For each model that was created, we retrieved the address of buffers
// used by them. So in the shader, we have direct access to the data
std::vector<ObjBuffers> obj_data;
auto nbObj = static_cast<uint32_t>(obj_models.size());
for (uint32_t i = 0; i < nbObj; ++i)
{
ObjBuffers data;
data.vertices = obj_models[i].vertex_buffer->get_device_address();
data.indices = obj_models[i].index_buffer->get_device_address();
data.materials = obj_models[i].mat_color_buffer->get_device_address();
data.materialIndices = obj_models[i].mat_index_buffer->get_device_address();
obj_data.emplace_back(data);
}
VkBufferUsageFlags buffer_usage_flags = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
scene_desc = std::make_unique<vkb::core::Buffer>(get_device(), nbObj * sizeof(ObjBuffers), buffer_usage_flags, VMA_MEMORY_USAGE_CPU_TO_GPU);
scene_desc->update(obj_data.data(), nbObj * sizeof(ObjBuffers));
}
/*
Create scene geometry and ray tracing acceleration structures
*/
void RaytracingReflection::create_scene()
{
// Materials
ObjMaterial mat_red = {{1, 0, 0}, {1, 1, 1}, 0.0f};
ObjMaterial mat_green = {{0, 1, 0}, {1, 1, 1}, 0.0f};
ObjMaterial mat_blue = {{0, 0, 1}, {1, 1, 1}, 0.0f};
ObjMaterial mat_yellow = {{1, 1, 0}, {1, 1, 1}, 0.0f};
ObjMaterial mat_cyan = {{0, 1, 1}, {1, 1, 1}, 0.0f};
ObjMaterial mat_magenta = {{1, 0, 1}, {1, 1, 1}, 0.0f};
ObjMaterial mat_grey = {{0.7f, 0.7f, 0.7f}, {0.9f, 0.9f, 0.9f}, 0.1f}; // Slightly reflective
ObjMaterial mat_mirror = {{0.3f, 0.9f, 1.0f}, {0.9f, 0.9f, 0.9f}, 0.9f}; // Mirror Slightly blue
// Geometries
auto cube = ObjCube();
auto plane = ObjPlane();
// Upload geometries to GPU
create_model(cube, {mat_red, mat_green, mat_blue, mat_yellow, mat_cyan, mat_magenta}); // 6 color faces
create_model(plane, {mat_grey});
create_model(cube, {mat_mirror});
// Create a buffer holding the address of model buffers (buffer reference)
create_buffer_references();
// Create as many bottom acceleration structures (blas) as there are geometries/models
create_bottom_level_acceleration_structure(obj_models[0]);
create_bottom_level_acceleration_structure(obj_models[1]);
create_bottom_level_acceleration_structure(obj_models[2]);
// Matrices to position the instances
glm::mat4 m_mirror_back = glm::scale(glm::translate(glm::mat4(1.f), glm::vec3(0.0f, 0.0f, -7.0f)), glm::vec3(5.0f, 5.0f, 0.1f));
glm::mat4 m_mirror_front = glm::scale(glm::translate(glm::mat4(1.f), glm::vec3(0.0f, 0.0f, 7.0f)), glm::vec3(5.0f, 5.0f, 0.1f));
glm::mat4 m_plane = glm::scale(glm::translate(glm::mat4(1.f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::vec3(15.0f, 15.0f, 15.0f));
glm::mat4 m_cube_left = glm::translate(glm::mat4(1.f), glm::vec3(-1.0f, 0.0f, 0.0f));
glm::mat4 m_cube_right = glm::translate(glm::mat4(1.f), glm::vec3(1.0f, 0.0f, 0.0f));
// Creating instances of the blas to the top level acceleration structure
std::vector<VkAccelerationStructureInstanceKHR> blas_instances;
blas_instances.push_back(create_blas_instance(0, m_cube_left));
blas_instances.push_back(create_blas_instance(0, m_cube_right));
blas_instances.push_back(create_blas_instance(1, m_plane));
blas_instances.push_back(create_blas_instance(2, m_mirror_back));
blas_instances.push_back(create_blas_instance(2, m_mirror_front));
// Building the TLAS
create_top_level_acceleration_structure(blas_instances);
}
/*
Create the Shader Binding Tables that connects the ray tracing pipelines' programs and the top-level acceleration structure
SBT Layout used in this sample:
/-------------\
| raygen |
|-------------|
| miss |
|-------------|
| miss shadow |
|-------------|
| hit |
\-------------/
*/
void RaytracingReflection::create_shader_binding_tables()
{
// Index position of the groups in the generated ray tracing pipeline
// To be generic, this should be pass in parameters
std::vector<uint32_t> rgen_index{0};
std::vector<uint32_t> miss_index{1, 2};
std::vector<uint32_t> hit_index{3};
const uint32_t handle_size = ray_tracing_pipeline_properties.shaderGroupHandleSize;
const uint32_t handle_alignment = ray_tracing_pipeline_properties.shaderGroupHandleAlignment;
const uint32_t handle_size_aligned = aligned_size(handle_size, handle_alignment);
const VkBufferUsageFlags sbt_buffer_usage_flags = VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR | VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
const VmaMemoryUsage sbt_memory_usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
// Create binding table buffers for each shader type
raygen_shader_binding_table = std::make_unique<vkb::core::Buffer>(get_device(), handle_size_aligned * rgen_index.size(), sbt_buffer_usage_flags, sbt_memory_usage, 0);
miss_shader_binding_table = std::make_unique<vkb::core::Buffer>(get_device(), handle_size_aligned * miss_index.size(), sbt_buffer_usage_flags, sbt_memory_usage, 0);
hit_shader_binding_table = std::make_unique<vkb::core::Buffer>(get_device(), handle_size_aligned * hit_index.size(), sbt_buffer_usage_flags, sbt_memory_usage, 0);
// Copy the pipeline's shader handles into a host buffer
const auto group_count = static_cast<uint32_t>(rgen_index.size() + miss_index.size() + hit_index.size());
const auto sbt_size = group_count * handle_size_aligned;
std::vector<uint8_t> shader_handle_storage(sbt_size);
VK_CHECK(vkGetRayTracingShaderGroupHandlesKHR(get_device().get_handle(), pipeline, 0, group_count, sbt_size, shader_handle_storage.data()));
// Write the handles in the SBT buffer
auto copyHandles = [&](auto &buffer, std::vector<uint32_t> &indices, uint32_t stride) {
auto *pBuffer = static_cast<uint8_t *>(buffer->map());
for (uint32_t index = 0; index < static_cast<uint32_t>(indices.size()); index++)
{
auto *pStart = pBuffer;
// Copy the handle
memcpy(pBuffer, shader_handle_storage.data() + (indices[index] * handle_size), handle_size);
pBuffer = pStart + stride; // Jumping to next group
}
buffer->unmap();
};
copyHandles(raygen_shader_binding_table, rgen_index, handle_size_aligned);
copyHandles(miss_shader_binding_table, miss_index, handle_size_aligned);
copyHandles(hit_shader_binding_table, hit_index, handle_size_aligned);
}
/*
Create the descriptor sets used for the ray tracing dispatch
*/
void RaytracingReflection::create_descriptor_sets()
{
uint32_t nbObj = static_cast<uint32_t>(obj_models.size());
std::vector<VkDescriptorPoolSize> pool_sizes = {
{VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1},
{VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1},
{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1},
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1},
};
VkDescriptorPoolCreateInfo descriptor_pool_create_info = vkb::initializers::descriptor_pool_create_info(pool_sizes, 1);
VK_CHECK(vkCreateDescriptorPool(get_device().get_handle(), &descriptor_pool_create_info, nullptr, &descriptor_pool));
VkDescriptorSetAllocateInfo descriptor_set_allocate_info = vkb::initializers::descriptor_set_allocate_info(descriptor_pool, &descriptor_set_layout, 1);
VK_CHECK(vkAllocateDescriptorSets(get_device().get_handle(), &descriptor_set_allocate_info, &descriptor_set));
// Setup the descriptor for binding our top level acceleration structure to the ray tracing shaders
VkWriteDescriptorSetAccelerationStructureKHR descriptor_acceleration_structure_info{VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR};
descriptor_acceleration_structure_info.accelerationStructureCount = 1;
descriptor_acceleration_structure_info.pAccelerationStructures = &top_level_acceleration_structure.handle;
VkWriteDescriptorSet acceleration_structure_write{VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET};
acceleration_structure_write.dstSet = descriptor_set;
acceleration_structure_write.dstBinding = 0;
acceleration_structure_write.descriptorCount = 1;
acceleration_structure_write.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
// The acceleration structure descriptor has to be chained via pNext
acceleration_structure_write.pNext = &descriptor_acceleration_structure_info;
VkDescriptorImageInfo image_descriptor{};
image_descriptor.imageView = storage_image.view;
image_descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
VkDescriptorBufferInfo uniform_descriptor = create_descriptor(*ubo);
VkDescriptorBufferInfo scene_descriptor = create_descriptor(*scene_desc);
VkWriteDescriptorSet result_image_write = vkb::initializers::write_descriptor_set(descriptor_set, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &image_descriptor);
VkWriteDescriptorSet uniform_buffer_write = vkb::initializers::write_descriptor_set(descriptor_set, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &uniform_descriptor);
VkWriteDescriptorSet scene_buffer_write = vkb::initializers::write_descriptor_set(descriptor_set, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3, &scene_descriptor);
std::vector<VkWriteDescriptorSet> write_descriptor_sets = {
acceleration_structure_write,
result_image_write,
uniform_buffer_write,
scene_buffer_write,
};
vkUpdateDescriptorSets(get_device().get_handle(), static_cast<uint32_t>(write_descriptor_sets.size()), write_descriptor_sets.data(), 0, VK_NULL_HANDLE);
}
/*
Create our ray tracing pipeline
*/
void RaytracingReflection::create_ray_tracing_pipeline()
{
// Slot for binding top level acceleration structures to the ray generation shader
VkDescriptorSetLayoutBinding acceleration_structure_layout_binding{};
acceleration_structure_layout_binding.binding = 0;
acceleration_structure_layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
acceleration_structure_layout_binding.descriptorCount = 1;
acceleration_structure_layout_binding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
VkDescriptorSetLayoutBinding result_image_layout_binding{};
result_image_layout_binding.binding = 1;
result_image_layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
result_image_layout_binding.descriptorCount = 1;
result_image_layout_binding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
VkDescriptorSetLayoutBinding uniform_buffer_binding{};
uniform_buffer_binding.binding = 2;
uniform_buffer_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
uniform_buffer_binding.descriptorCount = 1;
uniform_buffer_binding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
// Scene description
VkDescriptorSetLayoutBinding scene_buffer_binding{};
scene_buffer_binding.binding = 3;
scene_buffer_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
scene_buffer_binding.descriptorCount = 1;
scene_buffer_binding.stageFlags = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
std::vector<VkDescriptorSetLayoutBinding> bindings = {
acceleration_structure_layout_binding,
result_image_layout_binding,
uniform_buffer_binding,
scene_buffer_binding,
};
VkDescriptorSetLayoutCreateInfo layout_info{VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO};
layout_info.bindingCount = static_cast<uint32_t>(bindings.size());
layout_info.pBindings = bindings.data();
VK_CHECK(vkCreateDescriptorSetLayout(get_device().get_handle(), &layout_info, nullptr, &descriptor_set_layout));
VkPipelineLayoutCreateInfo pipeline_layout_create_info{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
pipeline_layout_create_info.setLayoutCount = 1;
pipeline_layout_create_info.pSetLayouts = &descriptor_set_layout;
VK_CHECK(vkCreatePipelineLayout(get_device().get_handle(), &pipeline_layout_create_info, nullptr, &pipeline_layout));
// Ray tracing shaders + buffer reference require SPIR-V 1.5, so we need to set the appropriate target environment for the glslang compiler
vkb::GLSLCompiler::set_target_environment(glslang::EShTargetSpv, glslang::EShTargetSpv_1_5);
/*
Setup ray tracing shader groups
Each shader group points at the corresponding shader in the pipeline
*/
std::vector<VkPipelineShaderStageCreateInfo> shader_stages;
// Ray generation group
{
shader_stages.push_back(load_shader("ray_tracing_reflection/raygen.rgen", VK_SHADER_STAGE_RAYGEN_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR raygen_group_ci{VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR};
raygen_group_ci.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
raygen_group_ci.generalShader = static_cast<uint32_t>(shader_stages.size()) - 1;
raygen_group_ci.closestHitShader = VK_SHADER_UNUSED_KHR;
raygen_group_ci.anyHitShader = VK_SHADER_UNUSED_KHR;
raygen_group_ci.intersectionShader = VK_SHADER_UNUSED_KHR;
shader_groups.push_back(raygen_group_ci);
}
// Ray miss group
{
shader_stages.push_back(load_shader("ray_tracing_reflection/miss.rmiss", VK_SHADER_STAGE_MISS_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR miss_group_ci{VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR};
miss_group_ci.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
miss_group_ci.generalShader = static_cast<uint32_t>(shader_stages.size()) - 1;
miss_group_ci.closestHitShader = VK_SHADER_UNUSED_KHR;
miss_group_ci.anyHitShader = VK_SHADER_UNUSED_KHR;
miss_group_ci.intersectionShader = VK_SHADER_UNUSED_KHR;
shader_groups.push_back(miss_group_ci);
}
// Ray miss (shadow) group
{
shader_stages.push_back(load_shader("ray_tracing_reflection/missShadow.rmiss", VK_SHADER_STAGE_MISS_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR miss_group_ci{VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR};
miss_group_ci.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
miss_group_ci.generalShader = static_cast<uint32_t>(shader_stages.size()) - 1;
miss_group_ci.closestHitShader = VK_SHADER_UNUSED_KHR;
miss_group_ci.anyHitShader = VK_SHADER_UNUSED_KHR;
miss_group_ci.intersectionShader = VK_SHADER_UNUSED_KHR;
shader_groups.push_back(miss_group_ci);
}
// Ray closest hit group
{
shader_stages.push_back(load_shader("ray_tracing_reflection/closesthit.rchit", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR closes_hit_group_ci{VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR};
closes_hit_group_ci.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
closes_hit_group_ci.generalShader = VK_SHADER_UNUSED_KHR;
closes_hit_group_ci.closestHitShader = static_cast<uint32_t>(shader_stages.size()) - 1;
closes_hit_group_ci.anyHitShader = VK_SHADER_UNUSED_KHR;
closes_hit_group_ci.intersectionShader = VK_SHADER_UNUSED_KHR;
shader_groups.push_back(closes_hit_group_ci);
}
/*
Create the ray tracing pipeline
*/
VkRayTracingPipelineCreateInfoKHR raytracing_pipeline_create_info{VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR};
raytracing_pipeline_create_info.stageCount = static_cast<uint32_t>(shader_stages.size());
raytracing_pipeline_create_info.pStages = shader_stages.data();
raytracing_pipeline_create_info.groupCount = static_cast<uint32_t>(shader_groups.size());
raytracing_pipeline_create_info.pGroups = shader_groups.data();
raytracing_pipeline_create_info.maxPipelineRayRecursionDepth = 2;
raytracing_pipeline_create_info.layout = pipeline_layout;
VK_CHECK(vkCreateRayTracingPipelinesKHR(get_device().get_handle(), VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &raytracing_pipeline_create_info, nullptr, &pipeline));
}
/*
Deletes all resources acquired by an acceleration structure
*/
void RaytracingReflection::delete_acceleration_structure(AccelerationStructure &acceleration_structure)
{
if (acceleration_structure.buffer)
{
acceleration_structure.buffer.reset();
}
if (acceleration_structure.handle)
{
vkDestroyAccelerationStructureKHR(device->get_handle(), acceleration_structure.handle, nullptr);
}
}
/*
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
*/
void RaytracingReflection::create_uniform_buffer()
{
ubo = std::make_unique<vkb::core::Buffer>(get_device(), sizeof(uniform_data), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VMA_MEMORY_USAGE_CPU_TO_GPU);
ubo->convert_and_update(uniform_data);
update_uniform_buffers();
}
/*
Command buffer generation
*/
void RaytracingReflection::build_command_buffers()
{
if (width != storage_image.width || height != storage_image.height)
{
// If the view port size has changed, we need to recreate the storage image
vkDestroyImageView(get_device().get_handle(), storage_image.view, nullptr);
vkDestroyImage(get_device().get_handle(), storage_image.image, nullptr);
vkFreeMemory(get_device().get_handle(), storage_image.memory, nullptr);
create_storage_image();
// The descriptor also needs to be updated to reference the new image
VkDescriptorImageInfo image_descriptor{};
image_descriptor.imageView = storage_image.view;
image_descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
VkWriteDescriptorSet result_image_write = vkb::initializers::write_descriptor_set(descriptor_set, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &image_descriptor);
vkUpdateDescriptorSets(get_device().get_handle(), 1, &result_image_write, 0, VK_NULL_HANDLE);
build_command_buffers();
}
VkCommandBufferBeginInfo command_buffer_begin_info{VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO};
VkImageSubresourceRange subresource_range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
for (int32_t i = 0; i < draw_cmd_buffers.size(); ++i)
{
VK_CHECK(vkBeginCommandBuffer(draw_cmd_buffers[i], &command_buffer_begin_info));
/*
Setup the strided device address regions pointing at the shader identifiers in the shader binding table
*/
const uint32_t handle_size_aligned = aligned_size(ray_tracing_pipeline_properties.shaderGroupHandleSize, ray_tracing_pipeline_properties.shaderGroupHandleAlignment);
VkStridedDeviceAddressRegionKHR raygen_shader_sbt_entry{};
raygen_shader_sbt_entry.deviceAddress = raygen_shader_binding_table->get_device_address();
raygen_shader_sbt_entry.stride = handle_size_aligned;
raygen_shader_sbt_entry.size = handle_size_aligned;
VkStridedDeviceAddressRegionKHR miss_shader_sbt_entry{};
miss_shader_sbt_entry.deviceAddress = miss_shader_binding_table->get_device_address();
miss_shader_sbt_entry.stride = handle_size_aligned;
miss_shader_sbt_entry.size = handle_size_aligned * 2;
VkStridedDeviceAddressRegionKHR hit_shader_sbt_entry{};
hit_shader_sbt_entry.deviceAddress = hit_shader_binding_table->get_device_address();
hit_shader_sbt_entry.stride = handle_size_aligned;
hit_shader_sbt_entry.size = handle_size_aligned;
VkStridedDeviceAddressRegionKHR callable_shader_sbt_entry{};
/*
Dispatch the ray tracing commands
*/
vkCmdBindPipeline(draw_cmd_buffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
vkCmdBindDescriptorSets(draw_cmd_buffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline_layout, 0, 1, &descriptor_set, 0, 0);
vkCmdTraceRaysKHR(
draw_cmd_buffers[i],
&raygen_shader_sbt_entry,
&miss_shader_sbt_entry,
&hit_shader_sbt_entry,
&callable_shader_sbt_entry,
width,
height,
1);
/*
Copy ray tracing output to swap chain image
*/
// Prepare current swap chain image as transfer destination
vkb::set_image_layout(
draw_cmd_buffers[i],
get_render_context().get_swapchain().get_images()[i],
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresource_range);
// Prepare ray tracing output image as transfer source
vkb::set_image_layout(
draw_cmd_buffers[i],
storage_image.image,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
subresource_range);
VkImageCopy copy_region{};
copy_region.srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.srcOffset = {0, 0, 0};
copy_region.dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.dstOffset = {0, 0, 0};
copy_region.extent = {width, height, 1};
vkCmdCopyImage(draw_cmd_buffers[i], storage_image.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
get_render_context().get_swapchain().get_images()[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region);
// Transition swap chain image back for presentation
vkb::set_image_layout(draw_cmd_buffers[i],
get_render_context().get_swapchain().get_images()[i],
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
subresource_range);
// Transition ray tracing output image back to general layout
vkb::set_image_layout(draw_cmd_buffers[i],
storage_image.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_GENERAL,
subresource_range);
/*
Start a new render pass to draw the UI overlay on top of the ray traced image
*/
VkClearValue clear_values[2];
clear_values[0].color = {{0.0f, 0.0f, 0.2f, 0.0f}};
clear_values[1].depthStencil = {0.0f, 0};
VkRenderPassBeginInfo render_pass_begin_info = vkb::initializers::render_pass_begin_info();
render_pass_begin_info.renderPass = render_pass;
render_pass_begin_info.framebuffer = framebuffers[i];
render_pass_begin_info.renderArea.extent.width = width;
render_pass_begin_info.renderArea.extent.height = height;
render_pass_begin_info.clearValueCount = 2;
render_pass_begin_info.pClearValues = clear_values;
vkCmdBeginRenderPass(draw_cmd_buffers[i], &render_pass_begin_info, VK_SUBPASS_CONTENTS_INLINE);
draw_ui(draw_cmd_buffers[i]);
vkCmdEndRenderPass(draw_cmd_buffers[i]);
VK_CHECK(vkEndCommandBuffer(draw_cmd_buffers[i]));
}
}
void RaytracingReflection::update_uniform_buffers()
{
auto mat = camera.matrices.perspective;
mat[1][1] *= -1; // Flipping Y axis
uniform_data.proj_inverse = glm::inverse(mat);
uniform_data.view_inverse = glm::inverse(camera.matrices.view);
ubo->convert_and_update(uniform_data);
}
bool RaytracingReflection::prepare(vkb::Platform &platform)
{
if (!ApiVulkanSample::prepare(platform))
{
return false;
}
// This sample copies the ray traced output to the swap chain image, so we need to enable the required image usage flags
const std::set<VkImageUsageFlagBits> image_usage_flags = {VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSFER_DST_BIT};
update_swapchain_image_usage_flags(image_usage_flags);
// This sample renders the UI overlay on top of the ray tracing output, so we need to disable color attachment clears
update_render_pass_flags(RenderPassCreateFlags::ColorAttachmentLoad);
// Get the ray tracing pipeline properties, which we'll need later on in the sample
VkPhysicalDeviceProperties2 device_properties{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2};
device_properties.pNext = &ray_tracing_pipeline_properties;
vkGetPhysicalDeviceProperties2(get_device().get_gpu().get_handle(), &device_properties);
// Get the acceleration structure features, which we'll need later on in the sample
VkPhysicalDeviceFeatures2 device_features{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2};
device_features.pNext = &acceleration_structure_features;
vkGetPhysicalDeviceFeatures2(get_device().get_gpu().get_handle(), &device_features);
camera.type = vkb::CameraType::LookAt;
camera.set_perspective(60.0f, (float) width / (float) height, 0.1f, 512.0f);
camera.set_rotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.set_translation(glm::vec3(0.0f, 0.0f, -2.5f));
create_storage_image();
create_scene();
create_uniform_buffer();
create_ray_tracing_pipeline();
create_shader_binding_tables();
create_descriptor_sets();
build_command_buffers();
prepared = true;
return true;
}
void RaytracingReflection::draw()
{
ApiVulkanSample::prepare_frame();
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &draw_cmd_buffers[current_buffer];
VK_CHECK(vkQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE));
ApiVulkanSample::submit_frame();
}
void RaytracingReflection::render(float delta_time)
{
if (!prepared)
return;
draw();
if (camera.updated)
update_uniform_buffers();
}
std::unique_ptr<vkb::VulkanSample> create_ray_tracing_reflection()
{
return std::make_unique<RaytracingReflection>();