forked from siit-vtt/semi-supervised-learning-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmethods.py
378 lines (309 loc) · 13.8 KB
/
methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import time
import math
import torch
import torch.nn.functional as F
def train_sup(label_loader, model, criterions, optimizer, epoch, args):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
criterion, _, _, criterion_l1 = criterions
end = time.time()
label_iter = iter(label_loader)
for i in range(len(label_iter)):
input, target, _ = next(label_iter)
# measure data loading time
data_time.update(time.time() - end)
sl = input.shape
batch_size = sl[0]
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss_ce = criterion(output, target_var) / float(batch_size)
reg_l1 = cal_reg_l1(model, criterion_l1)
loss = loss_ce + args.weight_l1 * reg_l1
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss_ce.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(label_iter), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
return top1.avg , losses.avg
def train_pi(label_loader, unlabel_loader, model, criterions, optimizer, epoch, args, weight_pi=20.0):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_pi = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
weights_cl = AverageMeter()
# switch to train mode
model.train()
criterion, criterion_mse, _, criterion_l1 = criterions
end = time.time()
label_iter = iter(label_loader)
unlabel_iter = iter(unlabel_loader)
len_iter = len(unlabel_iter)
for i in range(len_iter):
# set weights for the consistency loss
weight_cl = cal_consistency_weight(epoch*len_iter+i, end_ep=(args.epochs//2)*len_iter, end_w=1.0)
try:
input, target, input1 = next(label_iter)
except StopIteration:
label_iter = iter(label_loader)
input, target, input1 = next(label_iter)
input_ul, _, input1_ul = next(unlabel_iter)
sl = input.shape
su = input_ul.shape
batch_size = sl[0] + su[0]
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
input1_var = torch.autograd.Variable(input1)
input_ul_var = torch.autograd.Variable(input_ul)
input1_ul_var = torch.autograd.Variable(input1_ul)
input_concat_var = torch.cat([input_var, input_ul_var])
input1_concat_var = torch.cat([input1_var, input1_ul_var])
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_concat_var)
with torch.no_grad():
output1 = model(input1_concat_var)
output_label = output[:sl[0]]
#pred = F.softmax(output, 1) # consistency loss on logit is better
#pred1 = F.softmax(output1, 1)
loss_ce = criterion(output_label, target_var) / float(sl[0])
loss_pi = criterion_mse(output, output1) / float(args.num_classes * batch_size)
reg_l1 = cal_reg_l1(model, criterion_l1)
loss = loss_ce + args.weight_l1 * reg_l1 + weight_cl * weight_pi * loss_pi
# measure accuracy and record loss
prec1, prec5 = accuracy(output_label.data, target, topk=(1, 5))
losses.update(loss_ce.item(), input.size(0))
losses_pi.update(loss_pi.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
weights_cl.update(weight_cl, input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'LossPi {loss_pi.val:.4f} ({loss_pi.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len_iter, batch_time=batch_time,
data_time=data_time, loss=losses, loss_pi=losses_pi,
top1=top1, top5=top5))
return top1.avg , losses.avg, losses_pi.avg, weights_cl.avg
def train_mt(label_loader, unlabel_loader, model, model_teacher, criterions, optimizer, epoch, args, ema_const=0.95, weight_mt=8.0):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_cl = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
top1_t = AverageMeter()
top5_t = AverageMeter()
weights_cl = AverageMeter()
# switch to train mode
model.train()
model_teacher.train()
criterion, criterion_mse, _, criterion_l1 = criterions
end = time.time()
label_iter = iter(label_loader)
unlabel_iter = iter(unlabel_loader)
len_iter = len(unlabel_iter)
for i in range(len_iter):
# set weights for the consistency loss
global_step = epoch * len_iter + i
weight_cl = cal_consistency_weight(global_step, end_ep=(args.epochs//2)*len_iter, end_w=1.0)
try:
input, target, input1 = next(label_iter)
except StopIteration:
label_iter = iter(label_loader)
input, target, input1 = next(label_iter)
input_ul, _, input1_ul = next(unlabel_iter)
sl = input.shape
su = input_ul.shape
batch_size = sl[0] + su[0]
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
input1_var = torch.autograd.Variable(input1)
input_ul_var = torch.autograd.Variable(input_ul)
input1_ul_var = torch.autograd.Variable(input1_ul)
input_concat_var = torch.cat([input_var, input_ul_var])
input1_concat_var = torch.cat([input1_var, input1_ul_var])
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_concat_var)
with torch.no_grad():
output1 = model_teacher(input1_concat_var)
output_label = output[:sl[0]]
output1_label = output1[:sl[0]]
#pred = F.softmax(output, 1)
#pred1 = F.softmax(output1, 1)
loss_ce = criterion(output_label, target_var) /float(sl[0])
loss_cl = criterion_mse(output, output1) /float(args.num_classes * batch_size)
reg_l1 = cal_reg_l1(model, criterion_l1)
loss = loss_ce + args.weight_l1 * reg_l1 + weight_cl * weight_mt * loss_cl
# measure accuracy and record loss
prec1, prec5 = accuracy(output_label.data, target, topk=(1, 5))
prec1_t, prec5_t = accuracy(output1_label.data, target, topk=(1, 5))
losses.update(loss_ce.item(), input.size(0))
losses_cl.update(loss_cl.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
top1_t.update(prec1_t.item(), input.size(0))
top5_t.update(prec5_t.item(), input.size(0))
weights_cl.update(weight_cl, input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
update_ema_variables(model, model_teacher, ema_const, global_step)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'LossCL {loss_cl.val:.4f} ({loss_cl.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'
'PrecT@1 {top1_t.val:.3f} ({top1_t.avg:.3f})\t'
'PrecT@5 {top5_t.val:.3f} ({top5_t.avg:.3f})'.format(
epoch, i, len_iter, batch_time=batch_time,
data_time=data_time, loss=losses, loss_cl=losses_cl,
top1=top1, top5=top5, top1_t=top1_t, top5_t=top5_t))
return top1.avg , losses.avg, losses_cl.avg, top1_t.avg, weights_cl.avg
def validate(val_loader, model, criterions, args, mode = 'valid'):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
criterion, criterion_mse, _, _ = criterions
end = time.time()
with torch.no_grad():
for i, (input, target, _) in enumerate(val_loader):
sl = input.shape
batch_size = sl[0]
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
softmax = torch.nn.LogSoftmax(dim=1)(output)
loss = criterion(output, target_var) / float(batch_size)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
if mode == 'test':
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
else:
print('Valid: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' ****** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.3f} '
.format(top1=top1, top5=top5, loss=losses))
return top1.avg, losses.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def cal_consistency_weight(epoch, init_ep=0, end_ep=150, init_w=0.0, end_w=20.0):
"""Sets the weights for the consistency loss"""
if epoch > end_ep:
weight_cl = end_w
elif epoch < init_ep:
weight_cl = init_w
else:
T = float(epoch - init_ep)/float(end_ep - init_ep)
#weight_mse = T * (end_w - init_w) + init_w #linear
weight_cl = (math.exp(-5.0 * (1.0 - T) * (1.0 - T))) * (end_w - init_w) + init_w #exp
#print('Consistency weight: %f'%weight_cl)
return weight_cl
def cal_reg_l1(model, criterion_l1):
reg_loss = 0
np = 0
for param in model.parameters():
reg_loss += criterion_l1(param, torch.zeros_like(param))
np += param.nelement()
reg_loss = reg_loss / np
return reg_loss
def update_ema_variables(model, model_teacher, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1.0 - 1.0 / float(global_step + 1), alpha)
for param_t, param in zip(model_teacher.parameters(), model.parameters()):
param_t.data.mul_(alpha).add_(1 - alpha, param.data)