-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathsgan.py
190 lines (154 loc) · 7.34 KB
/
sgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import os
import numpy as np
import math
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--num_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
import jittor as jt
from jittor import init
from jittor import nn
def weights_init_normal(m):
classname = m.__class__.__name__
if (classname.find('Conv') != (- 1)):
init.gauss_(m.weight, mean=0.0, std=0.02)
elif (classname.find('BatchNorm') != (- 1)):
init.gauss_(m.weight, mean=1.0, std=0.02)
init.constant_(m.bias, value=0.0)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(opt.num_classes, opt.latent_dim)
self.init_size = (opt.img_size // 4)
self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, (128 * (self.init_size ** 2))))
self.conv_blocks = nn.Sequential(nn.BatchNorm(128), nn.Upsample(scale_factor=2), nn.Conv(128, 128, 3, stride=1, padding=1), nn.BatchNorm(128, eps=0.8), nn.LeakyReLU(scale=0.2), nn.Upsample(scale_factor=2), nn.Conv(128, 64, 3, stride=1, padding=1), nn.BatchNorm(64, eps=0.8), nn.LeakyReLU(scale=0.2), nn.Conv(64, opt.channels, 3, stride=1, padding=1), nn.Tanh())
for m in self.modules():
weights_init_normal(m)
def execute(self, noise):
out = self.l1(noise)
out = out.view((out.shape[0], 128, self.init_size, self.init_size))
img = self.conv_blocks(out)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
'Returns layers of each discriminator block'
block = [nn.Conv(in_filters, out_filters, 3, stride=2, padding=1), nn.LeakyReLU(scale=0.2), nn.Dropout(p=0.25)]
if bn:
block.append(nn.BatchNorm(out_filters, eps=0.8))
return block
self.conv_blocks = nn.Sequential(*discriminator_block(opt.channels, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128))
ds_size = (opt.img_size // (2 ** 4))
self.adv_layer = nn.Sequential(nn.Linear((128 * (ds_size ** 2)), 1), nn.Sigmoid())
self.aux_layer = nn.Sequential(nn.Linear((128 * (ds_size ** 2)), (opt.num_classes + 1)), nn.Softmax())
for m in self.modules():
weights_init_normal(m)
def execute(self, img):
out = self.conv_blocks(img)
out = out.view((out.shape[0], (- 1)))
validity = self.adv_layer(out)
label = self.aux_layer(out)
return (validity, label)
import cv2
def save_image(img, path, nrow=10, padding=5):
N,C,W,H = img.shape
if (N%nrow!=0):
print("N%nrow!=0")
return
ncol=int(N/nrow)
img_all = []
for i in range(ncol):
img_ = []
for j in range(nrow):
img_.append(img[i*nrow+j])
img_.append(np.zeros((C,W,padding)))
img_all.append(np.concatenate(img_, 2))
img_all.append(np.zeros((C,padding,img_all[0].shape[2])))
img = np.concatenate(img_all, 1)
img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1)
img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
if C==3:
img = img[:,:,::-1]
cv2.imwrite(path,img)
# Loss functions
adversarial_loss = nn.BCELoss()
auxiliary_loss = nn.CrossEntropyLoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
# Configure data loader
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
transform = transform.Compose([
transform.Resize(opt.img_size),
transform.Gray(),
transform.ImageNormalize(mean=[0.5], std=[0.5]),
])
dataloader = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
# Optimizers
optimizer_G = nn.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = nn.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# Adversarial ground truths
valid = jt.ones((batch_size, 1)).float32().stop_grad()
fake = jt.zeros((batch_size, 1)).float32().stop_grad()
fake_aux_gt = jt.zeros((batch_size, 1)).float32().stop_grad() * opt.num_classes
# Configure input
real_imgs = jt.array(imgs).float32()
labels = jt.array(labels).float32()
# -----------------
# Train Generator
# -----------------
# Sample noise and labels as generator input
z = jt.array(np.random.normal(0, 1, (batch_size, opt.latent_dim))).float32()
# Generate a batch of images
gen_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
validity, _ = discriminator(gen_imgs)
g_loss = adversarial_loss(validity, valid)
optimizer_G.step(g_loss)
# ---------------------
# Train Discriminator
# ---------------------
# Loss for real images
real_pred, real_aux = discriminator(real_imgs)
d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2
# Loss for fake images
fake_pred, fake_aux = discriminator(gen_imgs.detach())
d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, fake_aux_gt)) / 2
# Total discriminator loss
d_loss = (d_real_loss + d_fake_loss) / 2
# Calculate discriminator accuracy
pred = np.concatenate([real_aux.numpy(), fake_aux.numpy()], axis=0)
gt = np.concatenate([labels.numpy(), fake_aux_gt.numpy()[:,0]], axis=0)
d_acc = np.mean(np.argmax(pred, axis=1) == gt)
optimizer_D.step(d_loss)
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.data[0], 100 * d_acc, g_loss.data[0])
)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_imgs.numpy(), "images/%d.png" % batches_done, nrow=8)