-
Notifications
You must be signed in to change notification settings - Fork 449
/
Copy pathopencv_084.py
58 lines (49 loc) · 1.65 KB
/
opencv_084.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import cv2 as cv
cap = cv.VideoCapture('vtest.avi')
# 角点检测参数
feature_params = dict(maxCorners=100, qualityLevel=0.01, minDistance=10, blockSize=3)
# KLT光流参数
lk_params = dict(winSize=(31, 31), maxLevel=3, criteria=(cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 30, 0.01))
# 随机颜色
color = np.random.randint(0,255,(100,3)) #shape(100,3)
# 读取第一帧
ret, old_frame = cap.read()
old_gray = cv.cvtColor(old_frame, cv.COLOR_BGR2GRAY)
p0 = cv.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
# for pt in p0:
# print(pt)
# b = np.random.random_integers(0, 256)
# g = np.random.random_integers(0, 256)
# r = np.random.random_integers(0, 256)
# x = np.int32(pt[0][0])
# y = np.int32(pt[0][1])
# cv.circle(old_frame, (x, y), 5, (int(b), int(g), int(r)), 2)
# cv.imshow('s',old_frame)
# cv.waitKey(0)
# 光流跟踪
while True:
ret, frame = cap.read()
if ret is False:
break
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
# 计算光流
p1, st, err = cv.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# 根据状态选择
good_new = p1[st == 1]
good_old = p0[st == 1]
# 绘制跟踪线
for i, (new, old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
frame = cv.line(frame, (a,b),(c,d), color[i].tolist(), 2)
frame = cv.circle(frame,(a,b),5,color[i].tolist(),-1)
cv.imshow('frame',frame)
k = cv.waitKey(30) & 0xff
if k == 27:
break
# 更新
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1, 1, 2)
cv.destroyAllWindows()
cap.release()