-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexport_model.py
73 lines (59 loc) · 2.88 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: lionel
import argparse
import os
import tensorflow as tf
from data_helper import words_to_dic
from rnn_model import TextRNN
def export_model(sess, model, path, version, char_to_id): ## 清空导出目录 注意添加version版本信息
export_path = os.path.join(path, str(version))
if tf.gfile.IsDirectory(export_path):
tf.gfile.DeleteRecursively(export_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
tensor_info_x = tf.saved_model.utils.build_tensor_info(model.input_x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(model.logits)
tensor_info_dropout = tf.saved_model.utils.build_tensor_info(model.keep_prob)
predict_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'sentences': tensor_info_x, "dropout": tensor_info_dropout},
outputs={'label': tensor_info_y},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
)
)
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict_label': predict_signature,
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: predict_signature,
},
legacy_init_op=legacy_init_op
)
builder.save()
with tf.gfile.GFile(os.path.join(export_path, "char2id.csv"), "w") as file:
for key, value in char_to_id.iteritems():
file.write("%s\t%s\n" % (key, value))
print("Done exporting!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--embedding_size', type=int, default=200)
parser.add_argument('--hidden_layers', type=int, default=2)
parser.add_argument('--hidden_units', type=int, default=256)
parser.add_argument('--number_classes', type=int, default=3)
parser.add_argument('--learning_rate', type=float, default=0.01)
parser.add_argument('--sequence_length', type=int, default=200)
parser.add_argument('--vocab_size', type=int, default=10000)
parser.add_argument('--save_path', type=str,
default='model/model.ckpt')
parser.add_argument('--word_file', type=str,
default='model/words.csv')
FLAGS, unparser = parser.parse_known_args()
model = TextRNN(FLAGS.embedding_size, FLAGS.hidden_layers, FLAGS.hidden_units, FLAGS.number_classes,
FLAGS.learning_rate, FLAGS.sequence_length, FLAGS.vocab_size)
session = tf.Session()
session.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess=session, save_path=FLAGS.save_path)
word2id = words_to_dic(FLAGS.word_file)
export_model(sess=session, model=model, path='.', version=1, char_to_id=word2id)