-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathTFLite_detection_webcam_toggle_tpu_pycoral.py
304 lines (250 loc) · 12.7 KB
/
TFLite_detection_webcam_toggle_tpu_pycoral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#
# Webcam object detection supporting toggling between CPU and TPU acceleration
#
# Author: Jerry Kurata
# Date: Oct 1, 2020
# Description:
# NOTE: THIS CODE HAS ONLY BEEN TESTED ON RASPBERRY PI 4. HAVING A USB 3 PORT IS KEY TO PERFORMANCE.
#
# This is a modifier version of the Evan Juras's Object detection classifier. https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi
# This version lets the user toggle between using the Google Coral TPU accelerator or CPU for object detection.
# The use of the TPU can increase performance 5 to 10 times, depending up the TPU type.
# USB 3 connect TPUs such as the Coral USB Accelerator will see up to a 5 times increase in the
# number of frames for which objects are detected. Typically this means going from 3-4 fps with CPU to
# 20-24 fps with the Accelerator. For other devices higher performance connections like the Coral Dev
# Board the difference can be 10 times faster.
#
# To toggle back and forth between using or not using the acclerator, the user presses the 't' key.
#
# Edit History
# Date By Description
# 11/18/2020 J Kurata Replaced
######## Webcam Object Detection Using Tensorflow-trained Classifier #########
#
# Author: Evan Juras
# Date: 10/27/19
# Description:
# This program uses a TensorFlow Lite model to perform object detection on a live webcam
# feed. It draws boxes and scores around the objects of interest in each frame from the
# webcam. To improve FPS, the webcam object runs in a separate thread from the main program.
# This script will work with either a Picamera or regular USB webcam.
#
# This code is based off the TensorFlow Lite image classification example at:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py
#
# I added my own method of drawing boxes and labels using OpenCV.
# Import packages
import os
import argparse
import cv2
import numpy as np
import sys
import time
from threading import Thread
import importlib.util
import pycoral
from pycoral.utils import edgetpu # edge tpu utilities
#from pycoral.utils import dataset
from pycoral.adapters import common # I/O helpers (make_interpreter, load_edge_delegate, run_inference)
from pycoral.adapters import detect # Object dection functions
# Define VideoStream class to handle streaming of video from webcam in separate processing thread
# Source - Adrian Rosebrock, PyImageSearch: https://www.pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-with-python-and-opencv/
class VideoStream:
"""Camera object that controls video streaming from the Picamera"""
def __init__(self,resolution=(640,480),framerate=30):
# Initialize the PiCamera and the camera image stream
self.stream = cv2.VideoCapture(0)
ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
ret = self.stream.set(3,resolution[0])
ret = self.stream.set(4,resolution[1])
# Read first frame from the stream
(self.grabbed, self.frame) = self.stream.read()
# Variable to control when the camera is stopped
self.stopped = False
def start(self):
# Start the thread that reads frames from the video stream
Thread(target=self.update,args=()).start()
return self
def update(self):
# Keep looping indefinitely until the thread is stopped
while True:
# If the camera is stopped, stop the thread
if self.stopped:
# Close camera resources
self.stream.release()
return
# Otherwise, grab the next frame from the stream
(self.grabbed, self.frame) = self.stream.read()
def read(self):
# Return the most recent frame
return self.frame
def stop(self):
# Indicate that the camera and thread should be stopped
self.stopped = True
# Define and parse input arguments
parser = argparse.ArgumentParser()
parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
required=True)
parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
default='detect.tflite')
parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt',
default='labelmap.txt')
parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
default=0.5)
parser.add_argument('--resolution', help='Desired webcam resolution in WxH. If the webcam does not support the resolution entered, errors may occur.',
default='1280x720')
parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection',
action='store_true')
args = parser.parse_args()
MODEL_NAME = args.modeldir
GRAPH_NAME = args.graph
LABELMAP_NAME = args.labels
min_conf_threshold = float(args.threshold)
resW, resH = args.resolution.split('x')
imW, imH = int(resW), int(resH)
# use_TPU = args.edgetpu
use_TPU = True
using_TPU = False # Are we currenty using TPU? Toggle by pressing 't' key
# Import TensorFlow libraries
# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
pkg = importlib.util.find_spec('tflite_runtime')
if pkg:
print('tflite_runtime found')
# from tflite_runtime.interpreter import Interpreter
#from tflite_runtime.interpreter import load_delegate
else:
print('tflite_runtime NOT found')
from tensorflow.lite.python.interpreter import Interpreter
from tensorflow.lite.python.interpreter import load_delegate
# If using Edge TPU, assign filename for Edge TPU model
if use_TPU:
# If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
if (GRAPH_NAME == 'detect.tflite'):
GRAPH_NAME_TPU = 'edgetpu.tflite'
GRAPH_NAME_CPU = 'detect.tflite' #'edgetpu2.tflite'
# Get path to current working directory
CWD_PATH = os.getcwd()
# Path to .tflite file, which contains the model that is used for object detection
PATH_TO_CKPT_TPU = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME_TPU)
PATH_TO_CKPT_CPU = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME_CPU)
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
# Load the label map
with open(PATH_TO_LABELS, 'r') as f:
labels = [line.strip() for line in f.readlines()]
# Have to do a weird fix for label map if using the COCO "starter model" from
# https://www.tensorflow.org/lite/models/object_detection/overview
# First label is '???', which has to be removed.
if labels[0] == '???':
del(labels[0])
# Create 2 interpreter objects. One using TPU version and on using CPU version of model
print("TPU model:", PATH_TO_CKPT_TPU)
print("CPU model:", PATH_TO_CKPT_CPU)
interpreter_tpu = edgetpu.make_interpreter(model_path_or_content=PATH_TO_CKPT_TPU)
# interpreter_tpu = Interpreter(model_path=PATH_TO_CKPT_TPU,
# experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
#interpreter_cpu = Interpreter(model_path=PATH_TO_CKPT_CPU)
interpreter_cpu = edgetpu.make_interpreter(model_path_or_content=PATH_TO_CKPT_CPU)
# #Error thrown when we create 2 Interpreter objects
# # is this because of the same path? If so can we make copy of ckpt file with different name
# Allocate tensor for both interpreters
interpreter_tpu.allocate_tensors()
interpreter_cpu.allocate_tensors()
print('Initializing to use CPU.')
print('Press "t" to toggle between CPU and TPU, and "q" to terminate.')
# Start running on CPU
interpreter = interpreter_cpu
accelerator_used = 'CPU'
using_TPU = False
# Initial settings for model details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = (input_details[0]['dtype'] == np.float32)
input_mean = 127.5
input_std = 127.5
# Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()
# define font colors for TPU and CPU
FONT_COLOR_TPU = (0, 0, 255)
FONT_COLOR_CPU = (255,255, 0)
# Initialize video stream
videostream = VideoStream(resolution=(imW,imH),framerate=30).start()
time.sleep(1)
#for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):
while True:
# Start timer (for calculating frame rate)
t1 = cv2.getTickCount()
# Grab frame from video stream
frame1 = videostream.read()
# Acquire frame and resize to expected shape [1xHxWx3]
frame = frame1.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (width, height))
input_data = np.expand_dims(frame_resized, axis=0)
# Normalize pixel values if using a floating model (i.e. if model is non-quantized)
if floating_model:
input_data = (np.float32(input_data) - input_mean) / input_std
# Perform the actual detection by running the model with the image as input
interpreter.set_tensor(input_details[0]['index'],input_data)
interpreter.invoke()
# Retrieve detection results
boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates of detected objects
classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected objects
scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected objects
#num = interpreter.get_tensor(output_details[3]['index'])[0] # Total number of detected objects (inaccurate and not needed)
# Loop over all detections and draw detection box if confidence is above minimum threshold
for i in range(len(scores)):
if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
# Get bounding box coordinates and draw box
# Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
ymin = int(max(1,(boxes[i][0] * imH)))
xmin = int(max(1,(boxes[i][1] * imW)))
ymax = int(min(imH,(boxes[i][2] * imH)))
xmax = int(min(imW,(boxes[i][3] * imW)))
cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
# Draw label
object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
# Draw accelerator used and framerate in corner of frame
if using_TPU:
font_color = FONT_COLOR_TPU
else:
font_color = FONT_COLOR_CPU
cv2.putText(frame,'{0} FPS: {1:.2f}'.format(accelerator_used, frame_rate_calc),(30,50), \
cv2.FONT_HERSHEY_SIMPLEX,1,font_color,2,cv2.LINE_AA)
# All the results have been drawn on the frame, so it's time to display it.
cv2.imshow('Object detector', frame)
# Calculate framerate
t2 = cv2.getTickCount()
time1 = (t2-t1)/freq
frame_rate_calc= 1/time1
# capture keypress
keypressed = cv2.waitKey(1)
if keypressed == ord('q'): # q = quit
break
else:
if keypressed == ord('t'): # t = toggle between CPU and TPU
if using_TPU:
interpreter = interpreter_cpu
using_TPU = False
accelerator_used = 'CPU'
else:
interpreter = interpreter_tpu
using_TPU = True
accelerator_used = 'TPU'
# Since interpreter is changed we need to reload details based on interpreter
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = (input_details[0]['dtype'] == np.float32)
# Clean up
cv2.destroyAllWindows()
videostream.stop()