-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathfunction.py
33 lines (25 loc) · 1.05 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from torch.autograd import Function
import torch
class FakeQuantize(Function):
@staticmethod
def forward(ctx, x, qparam):
x = qparam.quantize_tensor(x)
x = qparam.dequantize_tensor(x)
return x
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
def interp(x: torch.Tensor, xp: torch.Tensor, fp: torch.Tensor) -> torch.Tensor:
x_ = x.reshape(x.size(0), -1)
xp = xp.unsqueeze(0)
fp = fp.unsqueeze(0)
m = (fp[:,1:] - fp[:,:-1]) / (xp[:,1:] - xp[:,:-1]) #slope
b = fp[:, :-1] - (m.mul(xp[:, :-1]) )
indicies = torch.sum(torch.ge(x_[:, :, None], xp[:, None, :]), -1) - 1 #torch.ge: x[i] >= xp[i] ? true: false
indicies = torch.clamp(indicies, 0, m.shape[-1] - 1)
line_idx = torch.linspace(0, indicies.shape[0], 1, device=indicies.device).to(torch.long)
line_idx = line_idx.expand(indicies.shape)
# idx = torch.cat([line_idx, indicies] , 0)
out = m[line_idx, indicies].mul(x_) + b[line_idx, indicies]
out = out.reshape(x.shape)
return out