forked from yinweijie/CFD-Eigen-Solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMesh.cpp
80 lines (71 loc) · 2.29 KB
/
Mesh.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include "Mesh.h"
void Mesh::initMesh(const Inputs* inputs)
{
dx = inputs->geometry.XLen / Nx;
dy = inputs->geometry.YLen / Ny;
dz = inputs->geometry.ZLen / Nz;
// 网格横截面积
Ax = dy * dz;
Ay = dx * dz;
Az = dx * dy;
// 面坐标,x,y,z方向
for(int i = 0; i <= Nx; i++)
{
xFace[i] = dx * i;
}
for(int i = 0; i <= Ny; i++)
{
yFace[i] = dy * i;
}
for(int i = 0; i <= Nz; i++)
{
zFace[i] = dz * i;
}
// cout << xFace << endl;
// 网格中心坐标
for(int i = 0; i < N; i++)
{
int ix = i % Nx;
int iy = i / Nx; // floor division
int iz = i / (Nx * Ny); // floor division
xCentroid[i] = 0.5 * (xFace[ix] + xFace[ix+1]);
yCentroid[i] = 0.5 * (yFace[iy] + yFace[iy+1]);
zCentroid[i] = 0.5 * (zFace[iz] + zFace[iz+1]);
}
// 网格中心相关量
for(int i = 0; i < N; i++)
{
if(is_at_left_boundary(i)) // 左边界的d_LP需要特殊处理
{
d_LP[i] = 2 * (xCentroid[i] - xFace.head(1)[0]);
flag_d_LP[i] = 1;
}
if(is_at_right_boundary(i)) // 右边界的d_PR需要特殊处理
{
d_PR[i] = 2 * (xFace.tail(1)[0] - xCentroid[i]);
flag_d_PR[i] = 1;
}
if(is_at_bottom_boundary(i)) // 下边界的d_BP需要特殊处理
{
d_BP[i] = 2 * (yCentroid[i] - yFace.head(1)[0]);
flag_d_BP[i] = 1;
}
if(is_at_top_boundary(i)) // 上边界的d_PT需要特殊处理
{
d_PT[i] = 2 * (yFace.tail(1)[0] - yCentroid[i]);
flag_d_PT[i] = 1;
}
int i_l = left_of(i);
int i_r = right_of(i);
int i_t = top_of(i);
int i_b = bottom_of(i);
// 未特殊处理的网格在这里统一赋值
if(!flag_d_LP[i]) (d_LP[i] = xCentroid[i] - xCentroid[i_l], flag_d_LP[i]);
if(!flag_d_PR[i]) (d_PR[i] = xCentroid[i_r] - xCentroid[i], flag_d_PR[i]);
if(!flag_d_PT[i]) (d_PT[i] = yCentroid[i_t] - yCentroid[i], flag_d_PT[i]);
if(!flag_d_BP[i]) (d_BP[i] = yCentroid[i] - yCentroid[i_b], flag_d_BP[i]);
// 网格体积 = faceArea * dx
int ix = i % Nx;
V[i] = Ax * (xFace[ix+1] - xFace[ix]);
}
}