-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
28 lines (23 loc) · 966 Bytes
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import os
import numpy as np
from PIL import Image
import torch
class CaptchaDataset:
def __init__(self, df, max_len, path, transform=None):
self.df = df
self.transform = transform
self.max_len = max_len
self.path = path
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
data = self.df.iloc[idx]
image = Image.open(os.path.join(self.path, data['image'])).convert('L')
label = torch.tensor(data['label'], dtype=torch.int32)
label = torch.cat((label, torch.tensor([0] * (self.max_len - len(label)))))
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
# sharpened_image = Image.fromarray(cv2.filter2D(np.array(image), -1, kernel))
if self.transform is not None:
image = self.transform(image)
# sharpened_image = self.transform(sharpened_image)
return image, label