-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathlora.py
executable file
·515 lines (420 loc) · 18.5 KB
/
lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# Sheng Wang at Feb 22 2023
import math
import timm
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from safetensors import safe_open
from safetensors.torch import save_file
from timm.models.vision_transformer import VisionTransformer as timm_ViT
from torch import Tensor
from torch.nn.parameter import Parameter
from base_vit import ViT
class _LoRALayer(nn.Module):
def __init__(self, w: nn.Module, w_a: nn.Module, w_b: nn.Module, r: int, alpha: int):
super().__init__()
self.w = w
self.w_a = w_a
self.w_b = w_b
self.r = r
self.alpha = alpha
def forward(self, x):
x = self.w(x) + (self.alpha // self.r) * self.w_b(self.w_a(x))
return x
class LoRA_ViT(nn.Module):
"""Applies low-rank adaptation to a vision transformer.
Args:
vit_model: a vision transformer model, see base_vit.py
r: rank of LoRA
num_classes: how many classes the model output, default to the vit model
lora_layer: which layer we apply LoRA.
Examples::
>>> model = ViT('B_16_imagenet1k')
>>> lora_model = LoRA_ViT(model, r=4)
>>> preds = lora_model(img)
>>> print(preds.shape)
torch.Size([1, 1000])
"""
def __init__(self, vit_model: ViT, r: int, alpha: int, num_classes: int = 0, lora_layer=None):
super(LoRA_ViT, self).__init__()
assert r > 0
assert alpha > 0
base_vit_dim = vit_model.transformer.blocks[0].attn.proj_q.in_features
dim = base_vit_dim
if lora_layer:
self.lora_layer = lora_layer
else:
self.lora_layer = list(range(len(vit_model.transformer.blocks)))
# create for storage, then we can init them or load weights
self.w_As = [] # These are linear layers
self.w_Bs = []
# lets freeze first
for param in vit_model.parameters():
param.requires_grad = False
# Here, we do the surgery
for t_layer_i, blk in enumerate(vit_model.transformer.blocks):
# If we only want few lora layer instead of all
if t_layer_i not in self.lora_layer:
continue
w_q_linear = blk.attn.proj_q
w_v_linear = blk.attn.proj_v
w_a_linear_q = nn.Linear(dim, r, bias=False)
w_b_linear_q = nn.Linear(r, dim, bias=False)
w_a_linear_v = nn.Linear(dim, r, bias=False)
w_b_linear_v = nn.Linear(r, dim, bias=False)
self.w_As.append(w_a_linear_q)
self.w_Bs.append(w_b_linear_q)
self.w_As.append(w_a_linear_v)
self.w_Bs.append(w_b_linear_v)
blk.attn.proj_q = _LoRALayer(w_q_linear, w_a_linear_q, w_b_linear_q, r, alpha)
blk.attn.proj_v = _LoRALayer(w_v_linear, w_a_linear_v, w_b_linear_v, r, alpha)
self.reset_parameters()
self.lora_vit = vit_model
if num_classes > 0:
self.lora_vit.fc = nn.Linear(vit_model.fc.in_features, num_classes)
def save_fc_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
"""
assert filename.endswith(".safetensors")
_in = self.lora_vit.fc.in_features
_out = self.lora_vit.fc.out_features
fc_tensors = {f"fc_{_in}in_{_out}out": self.lora_vit.fc.weight}
save_file(fc_tensors, filename)
def load_fc_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
"""
assert filename.endswith(".safetensors")
_in = self.lora_vit.fc.in_features
_out = self.lora_vit.fc.out_features
with safe_open(filename, framework="pt") as f:
saved_key = f"fc_{_in}in_{_out}out"
try:
saved_tensor = f.get_tensor(saved_key)
self.lora_vit.fc.weight = Parameter(saved_tensor)
except ValueError:
print("this fc weight is not for this model")
def save_lora_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
"""
assert filename.endswith(".safetensors")
num_layer = len(self.w_As) # actually, it is half
a_tensors = {f"w_a_{i:03d}": self.w_As[i].weight for i in range(num_layer)}
b_tensors = {f"w_b_{i:03d}": self.w_Bs[i].weight for i in range(num_layer)}
_in = self.lora_vit.fc.in_features
_out = self.lora_vit.fc.out_features
fc_tensors = {f"fc_{_in}in_{_out}out": self.lora_vit.fc.weight}
merged_dict = {**a_tensors, **b_tensors, **fc_tensors}
save_file(merged_dict, filename)
def load_lora_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
"""
assert filename.endswith(".safetensors")
with safe_open(filename, framework="pt") as f:
for i, w_A_linear in enumerate(self.w_As):
saved_key = f"w_a_{i:03d}"
saved_tensor = f.get_tensor(saved_key)
w_A_linear.weight = Parameter(saved_tensor)
for i, w_B_linear in enumerate(self.w_Bs):
saved_key = f"w_b_{i:03d}"
saved_tensor = f.get_tensor(saved_key)
w_B_linear.weight = Parameter(saved_tensor)
_in = self.lora_vit.fc.in_features
_out = self.lora_vit.fc.out_features
saved_key = f"fc_{_in}in_{_out}out"
try:
saved_tensor = f.get_tensor(saved_key)
self.lora_vit.fc.weight = Parameter(saved_tensor)
except ValueError:
print("this fc weight is not for this model")
def reset_parameters(self) -> None:
for w_A in self.w_As:
nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
for w_B in self.w_Bs:
nn.init.zeros_(w_B.weight)
def forward(self, x: Tensor) -> Tensor:
return self.lora_vit(x)
class _LoRA_qkv_timm(nn.Module):
"""In timm it is implemented as
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
"""
def __init__(
self,
qkv: nn.Module,
linear_a_q: nn.Module,
linear_b_q: nn.Module,
linear_a_v: nn.Module,
linear_b_v: nn.Module,
r: int,
alpha: int
):
super().__init__()
self.qkv = qkv
self.linear_a_q = linear_a_q
self.linear_b_q = linear_b_q
self.linear_a_v = linear_a_v
self.linear_b_v = linear_b_v
self.dim = qkv.in_features
self.w_identity = torch.eye(qkv.in_features)
self.r = r
self.alpha = alpha
def forward(self, x):
qkv = self.qkv(x) # B,N,3*org_C
new_q = self.linear_b_q(self.linear_a_q(x))
new_v = self.linear_b_v(self.linear_a_v(x))
qkv[:, :, : self.dim] += (self.alpha // self.r) * new_q
qkv[:, :, -self.dim :] += (self.alpha // self.r) * new_v
return qkv
class LoRA_ViT_timm(nn.Module):
def __init__(self, vit_model: timm_ViT, r: int, alpha: int, num_classes: int = 0, lora_layer=None):
super(LoRA_ViT_timm, self).__init__()
assert r > 0
assert alpha > 0
if lora_layer:
self.lora_layer = lora_layer
else:
self.lora_layer = list(range(len(vit_model.blocks)))
# dim = vit_model.head.in_features
# create for storage, then we can init them or load weights
self.w_As = [] # These are linear layers
self.w_Bs = []
# lets freeze first
for param in vit_model.parameters():
param.requires_grad = False
# Here, we do the surgery
for t_layer_i, blk in enumerate(vit_model.blocks):
# If we only want few lora layer instead of all
if t_layer_i not in self.lora_layer:
continue
w_qkv_linear = blk.attn.qkv
self.dim = w_qkv_linear.in_features
w_a_linear_q = nn.Linear(self.dim, r, bias=False)
w_b_linear_q = nn.Linear(r, self.dim, bias=False)
w_a_linear_v = nn.Linear(self.dim, r, bias=False)
w_b_linear_v = nn.Linear(r, self.dim, bias=False)
self.w_As.append(w_a_linear_q)
self.w_Bs.append(w_b_linear_q)
self.w_As.append(w_a_linear_v)
self.w_Bs.append(w_b_linear_v)
blk.attn.qkv = _LoRA_qkv_timm(
w_qkv_linear,
w_a_linear_q,
w_b_linear_q,
w_a_linear_v,
w_b_linear_v,
r,
alpha
)
self.reset_parameters()
self.lora_vit = vit_model
self.proj_3d = nn.Linear(num_classes * 30, num_classes)
if num_classes > 0:
self.lora_vit.reset_classifier(num_classes=num_classes)
# self.lora_vit.head = nn.Linear(
# self.dim, num_classes)
def save_fc_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
"""
assert filename.endswith(".safetensors")
_in = self.lora_vit.head.in_features
_out = self.lora_vit.head.out_features
fc_tensors = {f"fc_{_in}in_{_out}out": self.lora_vit.head.weight}
save_file(fc_tensors, filename)
def load_fc_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
"""
assert filename.endswith(".safetensors")
_in = self.lora_vit.head.in_features
_out = self.lora_vit.head.out_features
with safe_open(filename, framework="pt") as f:
saved_key = f"fc_{_in}in_{_out}out"
try:
saved_tensor = f.get_tensor(saved_key)
self.lora_vit.head.weight = Parameter(saved_tensor)
except ValueError:
print("this fc weight is not for this model")
def save_lora_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
save both lora and fc parameters.
"""
assert filename.endswith(".safetensors")
num_layer = len(self.w_As) # actually, it is half
a_tensors = {f"w_a_{i:03d}": self.w_As[i].weight for i in range(num_layer)}
b_tensors = {f"w_b_{i:03d}": self.w_Bs[i].weight for i in range(num_layer)}
_in = self.lora_vit.head.in_features
_out = self.lora_vit.head.out_features
fc_tensors = {f"fc_{_in}in_{_out}out": self.lora_vit.head.weight}
merged_dict = {**a_tensors, **b_tensors, **fc_tensors}
save_file(merged_dict, filename)
def load_lora_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.\
load both lora and fc parameters.
"""
assert filename.endswith(".safetensors")
with safe_open(filename, framework="pt") as f:
for i, w_A_linear in enumerate(self.w_As):
saved_key = f"w_a_{i:03d}"
saved_tensor = f.get_tensor(saved_key)
w_A_linear.weight = Parameter(saved_tensor)
for i, w_B_linear in enumerate(self.w_Bs):
saved_key = f"w_b_{i:03d}"
saved_tensor = f.get_tensor(saved_key)
w_B_linear.weight = Parameter(saved_tensor)
_in = self.lora_vit.head.in_features
_out = self.lora_vit.head.out_features
saved_key = f"fc_{_in}in_{_out}out"
try:
saved_tensor = f.get_tensor(saved_key)
self.lora_vit.head.weight = Parameter(saved_tensor)
except ValueError:
print("this fc weight is not for this model")
def reset_parameters(self) -> None:
for w_A in self.w_As:
nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
for w_B in self.w_Bs:
nn.init.zeros_(w_B.weight)
def forward(self, x: Tensor) -> Tensor:
return self.lora_vit(x)
# def forward(self, x: Tensor) -> Tensor:
# x = rearrange(x, "b s c h w -> (b s) c h w", s=30)
# x = self.lora_vit(x)
# x = rearrange(x, "(b s) d -> b (s d)", s=30)
# x = self.proj_3d(x)
# return x
class _LoRA_qkv_timm_x(nn.Module):
"""In timm it is implemented as
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
"""
def __init__(
self,
qkv: nn.Module,
linear_a_qs,
linear_b_qs,
linear_a_vs,
linear_b_vs,
scale_list,
):
super().__init__()
self.qkv = qkv
for i in range(len(linear_a_qs)):
setattr(self, f'linear_a_q_{i}', linear_a_qs[i])
setattr(self, f'linear_b_q_{i}', linear_b_qs[i])
setattr(self, f'linear_a_v_{i}', linear_a_vs[i])
setattr(self, f'linear_b_v_{i}', linear_b_vs[i])
self.dim = qkv.in_features
self.w_identity = torch.eye(qkv.in_features)
self.lora_id = 0
self.scale_list = scale_list
def change_lora(self, num):
self.lora_id = num
def forward(self, x):
qkv = self.qkv(x) # B,N,3*org_C
linear_a_q = getattr(self, f'linear_a_q_{self.lora_id}')
linear_b_q = getattr(self, f'linear_b_q_{self.lora_id}')
linear_a_v = getattr(self, f'linear_a_v_{self.lora_id}')
linear_b_v = getattr(self, f'linear_b_v_{self.lora_id}')
new_q = linear_b_q(linear_a_q(x))
new_v = linear_b_v(linear_a_v(x))
qkv[:, :, : self.dim] += self.scale_list[self.lora_id] * new_q
qkv[:, :, -self.dim :] += self.scale_list[self.lora_id] * new_v
return qkv
class LoRA_ViT_timm_x(nn.Module):
def __init__(self, vit_model: timm_ViT, lora_files: list, lora_layer=None):
super(LoRA_ViT_timm_x, self).__init__()
self.lora_layer = list(range(len(vit_model.blocks)))
# dim = vit_model.head.in_features
# create for storage, then we can init them or load weights
self.w_As = [] # These are linear layers
self.w_Bs = []
self.fc_loras = []
self.num_classes = []
# lets freeze first
for param in vit_model.parameters():
param.requires_grad = False
self.lora_vit = vit_model
# Here, we do the surgery
for t_layer_i, blk in enumerate(vit_model.blocks):
# If we only want few lora layer instead of all
if t_layer_i not in self.lora_layer:
continue
w_qkv_linear = blk.attn.qkv
self.dim = w_qkv_linear.in_features
w_a_linear_qs = []
w_b_linear_qs = []
w_a_linear_vs = []
w_b_linear_vs = []
scale_list = []
for file_path in lora_files:
with safe_open(file_path, framework="pt") as f:
melo_info = file_path.split("/")[-1].split("_")
r = int(melo_info[3])
alpha = int(melo_info[4])
scale_list.append(alpha // r)
w_a_linear_q = nn.Linear(self.dim, r, bias=False)
w_b_linear_q = nn.Linear(r, self.dim, bias=False)
w_a_linear_v = nn.Linear(self.dim, r, bias=False)
w_b_linear_v = nn.Linear(r, self.dim, bias=False)
w_a_linear_q.weight = Parameter(f.get_tensor(f"w_a_{t_layer_i * 2:03d}"))
w_b_linear_q.weight = Parameter(f.get_tensor(f"w_b_{t_layer_i * 2:03d}"))
w_a_linear_v.weight = Parameter(f.get_tensor(f"w_a_{t_layer_i * 2 + 1:03d}"))
w_b_linear_v.weight = Parameter(f.get_tensor(f"w_b_{t_layer_i * 2 + 1:03d}"))
w_a_linear_qs.append(w_a_linear_q)
w_b_linear_qs.append(w_b_linear_q)
w_a_linear_vs.append(w_a_linear_v)
w_b_linear_vs.append(w_b_linear_v)
_in = self.lora_vit.head.in_features
_out = int(melo_info[5])
self.num_classes.append(_out)
self.fc_loras.append(f.get_tensor(f"fc_{_in}in_{_out}out"))
blk.attn.qkv = _LoRA_qkv_timm_x(
w_qkv_linear,
w_a_linear_qs,
w_b_linear_qs,
w_a_linear_vs,
w_b_linear_vs,
scale_list
)
# self.reset_parameters()
# self.proj_3d = nn.Linear(num_classes * 30, num_classes)
for file_path in lora_files:
with safe_open(file_path, framework="pt") as f:
for key in f.keys():
if 'fc_' in key:
self.fc_loras.append(f.get_tensor(key))
break
# if num_classes > 0:
# self.lora_vit.reset_classifier(num_classes=num_classes)
# self.lora_vit.head = nn.Linear(
# self.dim, num_classes)
def swith_lora(self, idx:int):
for t_layer_i, blk in enumerate(self.lora_vit.blocks):
blk.attn.qkv.change_lora(idx)
self.lora_vit.reset_classifier(num_classes=self.num_classes[idx])
self.lora_vit.head.weight = Parameter(self.fc_loras[idx])
def forward(self, x: Tensor) -> Tensor:
return self.lora_vit(x)
if __name__ == "__main__": # Debug
img = torch.randn(2, 3, 224, 224)
model = timm.create_model("vit_base_patch16_224", pretrained=True)
lora_vit = LoRA_ViT_timm(vit_model=model, r=4, num_classes=10)
pred = lora_vit(img)
print(pred.shape)
img = torch.randn(2*20, 3, 224, 224)
model = timm.create_model("vit_base_patch16_224", pretrained=True)
lora_vit = LoRA_ViT_timm(vit_model=model, r=4, num_classes=10)
pred = lora_vit.forward3D(img)
print(pred.shape)