forked from microsoft/DirectML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDirectMLResourceBuilder.cpp
907 lines (753 loc) · 45.6 KB
/
DirectMLResourceBuilder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
#include "pch.h"
#include "DirectMLSuperResolution.h"
#include "ATGColors.h"
#include "ControllerFont.h"
#include "FindMedia.h"
#include "ReadData.h"
#include "Float16Compressor.h"
#include "DirectMLX.h"
using Microsoft::WRL::ComPtr;
using namespace DirectX;
#pragma warning(disable : 4238)
void Sample::CreateDirectMLResources()
{
auto device = m_deviceResources->GetD3DDevice();
// Shader for converting texture to tensor
{
auto computeShaderBlob = DX::ReadData(L"ImageToTensor.cso");
// Define root table layout
CD3DX12_DESCRIPTOR_RANGE descRange[2];
descRange[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0); // t0
descRange[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0); // u0
CD3DX12_ROOT_PARAMETER rootParameters[3];
rootParameters[e_crpIdxCB].InitAsConstants(3, 0);
rootParameters[e_crpIdxSRV].InitAsDescriptorTable(1, &descRange[0], D3D12_SHADER_VISIBILITY_ALL);
rootParameters[e_crpIdxUAV].InitAsDescriptorTable(1, &descRange[1], D3D12_SHADER_VISIBILITY_ALL);
CD3DX12_ROOT_SIGNATURE_DESC rootSignature(_countof(rootParameters), rootParameters);
ComPtr<ID3DBlob> serializedSignature;
DX::ThrowIfFailed(
D3D12SerializeRootSignature(&rootSignature, D3D_ROOT_SIGNATURE_VERSION_1, serializedSignature.GetAddressOf(), nullptr));
// Create the root signature
DX::ThrowIfFailed(
device->CreateRootSignature(
0,
serializedSignature->GetBufferPointer(),
serializedSignature->GetBufferSize(),
IID_PPV_ARGS(m_computeRootSignature.ReleaseAndGetAddressOf())));
m_computeRootSignature->SetName(L"Compute RS");
// Create compute pipeline state
D3D12_COMPUTE_PIPELINE_STATE_DESC descComputePSO = {};
descComputePSO.pRootSignature = m_computeRootSignature.Get();
descComputePSO.CS.pShaderBytecode = computeShaderBlob.data();
descComputePSO.CS.BytecodeLength = computeShaderBlob.size();
DX::ThrowIfFailed(
device->CreateComputePipelineState(&descComputePSO, IID_PPV_ARGS(m_computePSO.ReleaseAndGetAddressOf())));
m_computePSO->SetName(L"Compute PSO");
}
// Shader for rendering DML result tensor to texture
// This can also be done with a compute shader, depending on the app's needs.
{
auto vsShaderBlob = DX::ReadData(L"TensorToImageVS.cso");
auto psShaderBlob = DX::ReadData(L"TensorToImagePS.cso");
static const D3D12_INPUT_ELEMENT_DESC s_inputElementDesc[1] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
};
// Define root table layout
CD3DX12_DESCRIPTOR_RANGE descRange[1];
descRange[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_NONE); // t0
CD3DX12_ROOT_PARAMETER rootParameters[2];
rootParameters[e_rrpIdxCB].InitAsConstants(3, 0, 0, D3D12_SHADER_VISIBILITY_PIXEL);
rootParameters[e_rrpIdxSRV].InitAsDescriptorTable(1, &descRange[0], D3D12_SHADER_VISIBILITY_PIXEL);
CD3DX12_ROOT_SIGNATURE_DESC rootSignature(_countof(rootParameters), rootParameters,
0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);
ComPtr<ID3DBlob> serializedSignature;
DX::ThrowIfFailed(
D3D12SerializeRootSignature(&rootSignature, D3D_ROOT_SIGNATURE_VERSION_1, serializedSignature.GetAddressOf(), nullptr));
// Create the root signature
DX::ThrowIfFailed(
device->CreateRootSignature(
0,
serializedSignature->GetBufferPointer(),
serializedSignature->GetBufferSize(),
IID_PPV_ARGS(m_tensorRenderRootSignature.ReleaseAndGetAddressOf())));
m_tensorRenderRootSignature->SetName(L"Tensor Render RS");
// Create pipeline state
D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
psoDesc.InputLayout = { s_inputElementDesc, _countof(s_inputElementDesc) };
psoDesc.pRootSignature = m_tensorRenderRootSignature.Get();
psoDesc.VS = { vsShaderBlob.data(), vsShaderBlob.size() };
psoDesc.PS = { psShaderBlob.data(), psShaderBlob.size() };
psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
psoDesc.DepthStencilState.DepthEnable = FALSE;
psoDesc.DepthStencilState.StencilEnable = FALSE;
psoDesc.DSVFormat = m_deviceResources->GetDepthBufferFormat();
psoDesc.SampleMask = UINT_MAX;
psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
psoDesc.NumRenderTargets = 1;
psoDesc.RTVFormats[0] = DXGI_FORMAT_B8G8R8A8_UNORM;
psoDesc.SampleDesc.Count = 1;
DX::ThrowIfFailed(
device->CreateGraphicsPipelineState(&psoDesc,
IID_PPV_ARGS(m_tensorRenderPipelineState.ReleaseAndGetAddressOf())));
m_tensorRenderPipelineState->SetName(L"Tensor Render PSO");
// Resource to hold the rendered texture
D3D12_RESOURCE_DESC txtDesc = {};
txtDesc.MipLevels = txtDesc.DepthOrArraySize = 1;
txtDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM;
txtDesc.SampleDesc.Count = 1;
txtDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;
txtDesc.Width = m_origTextureWidth * 2;
txtDesc.Height = m_origTextureHeight * 2;
txtDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET;
DX::ThrowIfFailed(
device->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
D3D12_HEAP_FLAG_NONE,
&txtDesc,
D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE,
&CD3DX12_CLEAR_VALUE(DXGI_FORMAT_B8G8R8A8_UNORM, DirectX::Colors::Black),
IID_PPV_ARGS(m_finalResultTexture.ReleaseAndGetAddressOf())));
// Create an RTV for rendering to the texture, and an SRV for rendering it back to the screen
D3D12_RENDER_TARGET_VIEW_DESC rtvDesc = {};
rtvDesc.Format = txtDesc.Format;
rtvDesc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2D;
device->CreateRenderTargetView(m_finalResultTexture.Get(), &rtvDesc, m_RTVDescriptorHeap->GetCpuHandle(e_descFinalResultTextureRtv));
D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srvDesc.Format = txtDesc.Format;
srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
srvDesc.Texture2D.MipLevels = 1;
device->CreateShaderResourceView(m_finalResultTexture.Get(), &srvDesc, m_SRVDescriptorHeap->GetCpuHandle(e_descFinalResultTextureSrv));
}
// DirectML device
{
#if _DEBUG
DX::ThrowIfFailed(DMLCreateDevice(device, DML_CREATE_DEVICE_FLAG_DEBUG, IID_PPV_ARGS(&m_dmlDevice)));
#else
DX::ThrowIfFailed(DMLCreateDevice(device, DML_CREATE_DEVICE_FLAG_NONE, IID_PPV_ARGS(&m_dmlDevice)));
#endif
#if FORCE_NCHW
m_tensorLayout = TensorLayout::Default;
#else
// Determine the best tensor layout based on the GPU vendor.
// This is a fairly coarse-grained method, but recent Nvidia GPUs tend to use NHWC
// layouts, while others use the default NCHW.
ComPtr<IDXGIAdapter1> adapter;
DX::ThrowIfFailed(m_deviceResources->GetDXGIFactory()->EnumAdapterByLuid(device->GetAdapterLuid(), IID_PPV_ARGS(&adapter)));
DXGI_ADAPTER_DESC adapterDesc;
adapter->GetDesc(&adapterDesc);
if (adapterDesc.VendorId == 0x10DE) // Nvidia
{
// This is faster on recent Nvidia hardware, but may be a problem on older hardware.
// If necessary, set FORCE_NCHW to override this.
m_tensorLayout = TensorLayout::NHWC;
}
else
{
m_tensorLayout = TensorLayout::Default;
}
#endif
DML_FEATURE_QUERY_TENSOR_DATA_TYPE_SUPPORT fp16Query = { DML_TENSOR_DATA_TYPE_FLOAT16 };
DML_FEATURE_DATA_TENSOR_DATA_TYPE_SUPPORT fp16Supported = {};
DX::ThrowIfFailed(m_dmlDevice->CheckFeatureSupport(DML_FEATURE_TENSOR_DATA_TYPE_SUPPORT, sizeof(fp16Query), &fp16Query, sizeof(fp16Supported), &fp16Supported));
if (!fp16Supported.IsSupported)
{
throw std::exception("FP16 data type support is required for this sample.");
}
DX::ThrowIfFailed(m_dmlDevice->CreateCommandRecorder(IID_PPV_ARGS(&m_dmlCommandRecorder)));
}
uint64_t modelInputBufferSize = 0;
uint64_t modelOutputBufferSize = 0;
uint64_t intermediateBufferMaxSize[] = { 0, 0 };
// DirectML operator resources--implementation of the super-resolution model
{
// Create an upscaled (nearest neighbor) version of the image first
uint32_t modelInputSizes[] = { 1, 3, m_origTextureHeight, m_origTextureWidth };
uint32_t upscaledInputSizes[4];
CreateUpsampleLayer(modelInputSizes, &modelInputBufferSize, &modelOutputBufferSize, upscaledInputSizes, &m_dmlUpsampleOps[0]);
// Create the residual with three convolutions, an upsample, and four more convolutions
WeightMapType weights;
if (!LoadWeights("Assets\\weights.bin", weights))
{
throw std::exception("loadWeights");
}
DirectX::ResourceUploadBatch weightUploadBatch(device);
weightUploadBatch.Begin();
uint32_t const filterSizes1[] = { 32, 3, 5, 5 };
uint32_t intermediateInputSizes[2][4];
CreateConvolutionLayer(modelInputSizes, filterSizes1, true, &modelInputBufferSize,
&intermediateBufferMaxSize[0], intermediateInputSizes[0], &m_dmlConvOps[0]);
CreateWeightTensors(weights, "conv1/weights", "conv1/BatchNorm/scale", "conv1/BatchNorm/shift",
filterSizes1, weightUploadBatch, &m_modelConvFilterWeights[0], &m_modelConvBiasWeights[0]);
// Which intermediate resource to use as input for the current operation. The other will be
// used as output. Then the next op will swap the order.
int inputIndex = 0;
uint32_t const filterSizes2[] = { 64, 32, 3, 3 }; // output filters
CreateConvolutionLayer(intermediateInputSizes[inputIndex], filterSizes2, true, &intermediateBufferMaxSize[inputIndex],
&intermediateBufferMaxSize[1 - inputIndex], intermediateInputSizes[1 - inputIndex], &m_dmlConvOps[1]);
CreateWeightTensors(weights, "conv2/weights", "conv2/BatchNorm/scale", "conv2/BatchNorm/shift",
filterSizes2, weightUploadBatch, &m_modelConvFilterWeights[1], &m_modelConvBiasWeights[1]);
inputIndex = 1 - inputIndex;
uint32_t const filterSizes3[] = { 64, 64, 3, 3 };
CreateConvolutionLayer(intermediateInputSizes[inputIndex], filterSizes3, true, &intermediateBufferMaxSize[inputIndex],
&intermediateBufferMaxSize[1 - inputIndex], intermediateInputSizes[1 - inputIndex], &m_dmlConvOps[2]);
CreateWeightTensors(weights, "conv3/weights", "conv3/BatchNorm/scale", "conv3/BatchNorm/shift",
filterSizes3, weightUploadBatch, &m_modelConvFilterWeights[2], &m_modelConvBiasWeights[2]);
inputIndex = 1 - inputIndex;
CreateUpsampleLayer(intermediateInputSizes[inputIndex], &intermediateBufferMaxSize[inputIndex],
&intermediateBufferMaxSize[1 - inputIndex], intermediateInputSizes[1 - inputIndex], &m_dmlUpsampleOps[1]);
inputIndex = 1 - inputIndex;
uint32_t const filterSizes4[] = { 32, 64, 5, 5 };
CreateConvolutionLayer(intermediateInputSizes[inputIndex], filterSizes4, true, &intermediateBufferMaxSize[inputIndex],
&intermediateBufferMaxSize[1 - inputIndex], intermediateInputSizes[1 - inputIndex], &m_dmlConvOps[3]);
CreateWeightTensors(weights, "conv_up1/conv/weights", "conv_up1/conv/BatchNorm/scale", "conv_up1/conv/BatchNorm/shift",
filterSizes4, weightUploadBatch, &m_modelConvFilterWeights[3], &m_modelConvBiasWeights[3]);
inputIndex = 1 - inputIndex;
uint32_t const filterSizes5[] = { 32, 32, 3, 3 };
CreateConvolutionLayer(intermediateInputSizes[inputIndex], filterSizes5, true, &intermediateBufferMaxSize[inputIndex],
&intermediateBufferMaxSize[1 - inputIndex], intermediateInputSizes[1 - inputIndex], &m_dmlConvOps[4]);
CreateWeightTensors(weights, "conv4/weights", "conv4/BatchNorm/scale", "conv4/BatchNorm/shift",
filterSizes5, weightUploadBatch, &m_modelConvFilterWeights[4], &m_modelConvBiasWeights[4]);
inputIndex = 1 - inputIndex;
CreateConvolutionLayer(intermediateInputSizes[inputIndex], filterSizes5, true, &intermediateBufferMaxSize[inputIndex],
&intermediateBufferMaxSize[1 - inputIndex], intermediateInputSizes[1 - inputIndex], &m_dmlConvOps[5]);
CreateWeightTensors(weights, "conv5/weights", "conv5/BatchNorm/scale", "conv5/BatchNorm/shift",
filterSizes5, weightUploadBatch, &m_modelConvFilterWeights[5], &m_modelConvBiasWeights[5]);
inputIndex = 1 - inputIndex;
uint32_t const filterSizes6[] = { 3, 32, 3, 3 };
CreateConvolutionLayer(intermediateInputSizes[inputIndex], filterSizes6, false, &intermediateBufferMaxSize[inputIndex],
&intermediateBufferMaxSize[1 - inputIndex], intermediateInputSizes[1 - inputIndex], &m_dmlConvOps[6]);
CreateWeightTensors(weights, "conv6/weights", nullptr, nullptr, filterSizes6, weightUploadBatch,
&m_modelConvFilterWeights[6], nullptr);
inputIndex = 1 - inputIndex;
// Finally add the residual to the original upsampled image
assert(memcmp(upscaledInputSizes, intermediateInputSizes[inputIndex], 4 * sizeof(uint16_t)) == 0);
CreateAdditionLayer(upscaledInputSizes, &m_dmlAddResidualOp);
weightUploadBatch.End(m_deviceResources->GetCommandQueue());
}
// Buffers for DML inputs and outputs
{
// Resource for input tensor
D3D12_RESOURCE_DESC resourceDesc = CD3DX12_RESOURCE_DESC::Buffer(modelInputBufferSize, D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS);
DX::ThrowIfFailed(device->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
D3D12_HEAP_FLAG_NONE,
&resourceDesc,
D3D12_RESOURCE_STATE_COMMON,
nullptr,
IID_PPV_ARGS(&m_modelInput)
));
// Describe and create a UAV for the original input tensor.
D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {};
uavDesc.Format = DXGI_FORMAT_R16_FLOAT;
uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER;
uavDesc.Buffer.FirstElement = 0;
uavDesc.Buffer.NumElements = static_cast<UINT>(modelInputBufferSize / sizeof(uint16_t));
uavDesc.Buffer.StructureByteStride = 0;
uavDesc.Buffer.CounterOffsetInBytes = 0;
uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE;
device->CreateUnorderedAccessView(m_modelInput.Get(), nullptr, &uavDesc, m_SRVDescriptorHeap->GetCpuHandle(e_descModelInput));
// Model result tensor is 2x larger in both dimensions
resourceDesc.Width = modelOutputBufferSize;
DX::ThrowIfFailed(device->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
D3D12_HEAP_FLAG_NONE,
&resourceDesc,
D3D12_RESOURCE_STATE_COMMON,
nullptr,
IID_PPV_ARGS(&m_modelOutput)
));
// Describe and create a SRV for the final result tensor.
D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srvDesc.Format = DXGI_FORMAT_R16_FLOAT;
srvDesc.ViewDimension = D3D12_SRV_DIMENSION_BUFFER;
srvDesc.Buffer.FirstElement = 0;
srvDesc.Buffer.NumElements = static_cast<UINT>(modelOutputBufferSize / sizeof(uint16_t));
srvDesc.Buffer.StructureByteStride = 0;
srvDesc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_NONE;
device->CreateShaderResourceView(m_modelOutput.Get(), &srvDesc, m_SRVDescriptorHeap->GetCpuHandle(e_descModelOutput));
// Create two resources for intermediate layer results. Each layer will ping-pong between these. They're each large
// enough to hold the largest intermediate result required.
for (int i = 0; i < 2; i++)
{
resourceDesc.Width = intermediateBufferMaxSize[i];
DX::ThrowIfFailed(device->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
D3D12_HEAP_FLAG_NONE,
&resourceDesc,
D3D12_RESOURCE_STATE_COMMON,
nullptr,
IID_PPV_ARGS(&m_modelIntermediateResult[i])
));
}
}
// Wait until assets have been uploaded to the GPU.
m_deviceResources->WaitForGpu();
}
UINT GetDescriptorCount(size_t numOps, IDMLCompiledOperator** ops, IDMLOperatorInitializer* initializer)
{
auto bindingProps = initializer->GetBindingProperties();
UINT requiredDescriptorCount = bindingProps.RequiredDescriptorCount;
for (size_t i = 0; i < numOps; i++)
{
bindingProps = ops[i]->GetBindingProperties();
requiredDescriptorCount = std::max(requiredDescriptorCount, bindingProps.RequiredDescriptorCount);
}
return requiredDescriptorCount;
}
void Sample::InitializeDirectMLResources()
{
auto commandList = m_deviceResources->GetCommandList();
commandList->Reset(m_deviceResources->GetCommandAllocator(), nullptr);
// Create operator initializers and descriptor heap for binding
size_t upsampleOpDescriptorCount, convOpDescriptorCount, additionOpDescriptorCount;
size_t upsampleDescriptorsIdx, convDescriptorsIdx, additionDescriptorsIdx;
{
// The same descriptor heap will be used for both initializing and executing operators. These each happen
// at different times, so we reuse the same descriptor slots. GetDescriptorCount() ensures there are enough
// slots for both cases.
DX::ThrowIfFailed(m_dmlDevice->CreateOperatorInitializer(c_numUpsampleLayers, m_dmlUpsampleOps[0].GetAddressOf(), IID_PPV_ARGS(m_dmlOpInitializers[e_opUpsample].GetAddressOf())));
upsampleOpDescriptorCount = GetDescriptorCount(c_numUpsampleLayers, m_dmlUpsampleOps[0].GetAddressOf(), m_dmlOpInitializers[e_opUpsample].Get());
DX::ThrowIfFailed(m_dmlDevice->CreateOperatorInitializer(c_numConvLayers, m_dmlConvOps[0].GetAddressOf(), IID_PPV_ARGS(m_dmlOpInitializers[e_opConv].GetAddressOf())));
convOpDescriptorCount = GetDescriptorCount(c_numConvLayers, m_dmlConvOps[0].GetAddressOf(), m_dmlOpInitializers[e_opConv].Get());
DX::ThrowIfFailed(m_dmlDevice->CreateOperatorInitializer(1, m_dmlAddResidualOp.GetAddressOf(), IID_PPV_ARGS(m_dmlOpInitializers[e_opAdd].GetAddressOf())));
additionOpDescriptorCount = GetDescriptorCount(1, m_dmlAddResidualOp.GetAddressOf(), m_dmlOpInitializers[e_opAdd].Get());
upsampleDescriptorsIdx = 0;
convDescriptorsIdx = upsampleDescriptorsIdx + upsampleOpDescriptorCount * c_numUpsampleLayers;
additionDescriptorsIdx = convDescriptorsIdx + convOpDescriptorCount * c_numConvLayers;
size_t descriptorCount = additionDescriptorsIdx + additionOpDescriptorCount;
m_dmlDescriptorHeap = std::make_unique<DirectX::DescriptorHeap>(m_deviceResources->GetD3DDevice(),
D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV,
D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE,
descriptorCount);
// Operator initialization dispatches will use this heap right away
ID3D12DescriptorHeap* pHeaps[] = { m_dmlDescriptorHeap->Heap() };
commandList->SetDescriptorHeaps(_countof(pHeaps), pHeaps);
}
// Create any persistent resources required for the operators.
{
for (int i = 0; i < c_numUpsampleLayers + c_numConvLayers + 1; i++)
{
IDMLCompiledOperator* currentOp;
ID3D12Resource** persistentResource;
if (i < c_numUpsampleLayers)
{
currentOp = m_dmlUpsampleOps[i].Get();
persistentResource = m_modelUpsamplePersistentResources[i].ReleaseAndGetAddressOf();
}
else if (i < c_numUpsampleLayers + c_numConvLayers)
{
currentOp = m_dmlConvOps[i - c_numUpsampleLayers].Get();
persistentResource = m_modelConvPersistentResources[i - c_numUpsampleLayers].ReleaseAndGetAddressOf();
}
else
{
currentOp = m_dmlAddResidualOp.Get();
persistentResource = m_modelAddPersistentResource.ReleaseAndGetAddressOf();
}
auto bindingProps = currentOp->GetBindingProperties();
if (bindingProps.PersistentResourceSize > 0)
{
D3D12_RESOURCE_DESC resourceDesc = CD3DX12_RESOURCE_DESC::Buffer(bindingProps.PersistentResourceSize, D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS);
DX::ThrowIfFailed(m_deviceResources->GetD3DDevice()->CreateCommittedResource(
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
D3D12_HEAP_FLAG_NONE,
&resourceDesc,
D3D12_RESOURCE_STATE_COMMON,
nullptr,
IID_PPV_ARGS(persistentResource)));
}
}
}
// When binding input and output resources, take note of which temp resource is used at the time:
// Layer | Input | Output
// Upsample[0] | m_modelInput | m_modelOutput
// Conv[0] | m_modelInput | m_modelIntermediateResult[0]
// Conv[1] | m_modelIntermediateResult[0] | m_modelIntermediateResult[1]
// Conv[2] | m_modelIntermediateResult[1] | m_modelIntermediateResult[0]
// Upsample[1] | m_modelIntermediateResult[0] | m_modelIntermediateResult[1]
// Conv[3] | m_modelIntermediateResult[1] | m_modelIntermediateResult[0]
// Conv[4] | m_modelIntermediateResult[0] | m_modelIntermediateResult[1]
// Conv[5] | m_modelIntermediateResult[1] | m_modelIntermediateResult[0]
// Conv[6] | m_modelIntermediateResult[0] | m_modelIntermediateResult[1]
// Addition | m_modelIntermediateResult[1], m_modelOutput | m_modelOutput
const DML_BUFFER_BINDING emptyBufferBinding = { nullptr, 0, 0 };
const DML_BINDING_DESC emptyBindingDesc = { DML_BINDING_TYPE_NONE, nullptr };
// Bind D3D resources
Microsoft::WRL::ComPtr<IDMLBindingTable> initBindingTable;
// Upsample layers
{
// Bind resources for initialization.
auto bindingProps = m_dmlOpInitializers[e_opUpsample]->GetBindingProperties();
// The DML API guarantees that initialization never uses a persistent resource.
assert(bindingProps.PersistentResourceSize == 0);
DML_BINDING_TABLE_DESC tableDesc = {
m_dmlOpInitializers[e_opUpsample].Get(),
m_dmlDescriptorHeap->GetCpuHandle(upsampleDescriptorsIdx),
m_dmlDescriptorHeap->GetGpuHandle(upsampleDescriptorsIdx),
bindingProps.RequiredDescriptorCount
};
DX::ThrowIfFailed(m_dmlDevice->CreateBindingTable(&tableDesc, IID_PPV_ARGS(&initBindingTable)));
// If the operator requires a persistent resource, it must be bound as output for the initializer.
DML_BUFFER_BINDING upsamplePersistentBuffers[c_numUpsampleLayers];
DML_BINDING_DESC upsamplePersistentBindings[c_numUpsampleLayers];
for (int i = 0; i < c_numUpsampleLayers; i++)
{
if (m_modelUpsamplePersistentResources[i].Get() != nullptr)
{
upsamplePersistentBuffers[i] = { m_modelUpsamplePersistentResources[i].Get(), 0, m_modelUpsamplePersistentResources[i]->GetDesc().Width };
upsamplePersistentBindings[i] = { DML_BINDING_TYPE_BUFFER, &upsamplePersistentBuffers[i] };
}
else
upsamplePersistentBindings[i] = emptyBindingDesc;
}
// The inputs will vary each frame, so don't bind inputs at initialization.
initBindingTable->BindInputs(0, nullptr);
initBindingTable->BindOutputs(c_numUpsampleLayers, upsamplePersistentBindings);
BindTempResourceIfNeeded(bindingProps, initBindingTable.Get(), m_modelInitTemporaryResources[e_opUpsample].ReleaseAndGetAddressOf());
// Run initialization
m_dmlCommandRecorder->RecordDispatch(commandList, m_dmlOpInitializers[e_opUpsample].Get(), initBindingTable.Get());
// Bind resources for execution
for (int i = 0; i < c_numUpsampleLayers; i++)
{
bindingProps = m_dmlUpsampleOps[i]->GetBindingProperties();
tableDesc = {
m_dmlUpsampleOps[i].Get(),
m_dmlDescriptorHeap->GetCpuHandle(upsampleDescriptorsIdx + i * upsampleOpDescriptorCount),
m_dmlDescriptorHeap->GetGpuHandle(upsampleDescriptorsIdx + i * upsampleOpDescriptorCount),
bindingProps.RequiredDescriptorCount
};
DX::ThrowIfFailed(m_dmlDevice->CreateBindingTable(&tableDesc, IID_PPV_ARGS(m_dmlUpsampleBindings[i].ReleaseAndGetAddressOf())));
auto inputResource = (i == 0) ? m_modelInput : m_modelIntermediateResult[0];
auto outputResource = (i == 0) ? m_modelOutput : m_modelIntermediateResult[1];
DML_BUFFER_BINDING inputBufferBinding = { inputResource.Get(), 0, inputResource->GetDesc().Width };
DML_BINDING_DESC inputBinding = { DML_BINDING_TYPE_BUFFER, &inputBufferBinding };
DML_BUFFER_BINDING outputBufferBinding = { outputResource.Get(), 0, outputResource->GetDesc().Width };
DML_BINDING_DESC outputBinding = { DML_BINDING_TYPE_BUFFER, &outputBufferBinding };
m_dmlUpsampleBindings[i]->BindInputs(1, &inputBinding);
m_dmlUpsampleBindings[i]->BindOutputs(1, &outputBinding);
BindTempResourceIfNeeded(bindingProps, m_dmlUpsampleBindings[i].Get(), m_modelUpsampleTemporaryResources[i].ReleaseAndGetAddressOf());
if (m_modelUpsamplePersistentResources[i].Get() != nullptr)
m_dmlUpsampleBindings[i]->BindPersistentResource(&upsamplePersistentBindings[i]);
}
}
// Convolution layers
{
// Bind resources for initialization
auto bindingProps = m_dmlOpInitializers[e_opConv]->GetBindingProperties();
assert(bindingProps.PersistentResourceSize == 0);
DML_BINDING_TABLE_DESC tableDesc = {
m_dmlOpInitializers[e_opConv].Get(),
m_dmlDescriptorHeap->GetCpuHandle(convDescriptorsIdx),
m_dmlDescriptorHeap->GetGpuHandle(convDescriptorsIdx),
bindingProps.RequiredDescriptorCount
};
DX::ThrowIfFailed(initBindingTable->Reset(&tableDesc));
#if DML_MANAGED_WEIGHTS
// Bind the weight tensors at initialization instead of at execution. This lets DirectML reformat them
// and improve performance on some hardware.
DML_BUFFER_BINDING convBufferBindings[][3] = {
{ emptyBufferBinding, { m_modelConvFilterWeights[0].Get(), 0, m_modelConvFilterWeights[0]->GetDesc().Width }, { m_modelConvBiasWeights[0].Get(), 0, m_modelConvBiasWeights[0]->GetDesc().Width } },
{ emptyBufferBinding, { m_modelConvFilterWeights[1].Get(), 0, m_modelConvFilterWeights[1]->GetDesc().Width }, { m_modelConvBiasWeights[1].Get(), 0, m_modelConvBiasWeights[1]->GetDesc().Width } },
{ emptyBufferBinding, { m_modelConvFilterWeights[2].Get(), 0, m_modelConvFilterWeights[2]->GetDesc().Width }, { m_modelConvBiasWeights[2].Get(), 0, m_modelConvBiasWeights[2]->GetDesc().Width } },
{ emptyBufferBinding, { m_modelConvFilterWeights[3].Get(), 0, m_modelConvFilterWeights[3]->GetDesc().Width }, { m_modelConvBiasWeights[3].Get(), 0, m_modelConvBiasWeights[3]->GetDesc().Width } },
{ emptyBufferBinding, { m_modelConvFilterWeights[4].Get(), 0, m_modelConvFilterWeights[4]->GetDesc().Width }, { m_modelConvBiasWeights[4].Get(), 0, m_modelConvBiasWeights[4]->GetDesc().Width } },
{ emptyBufferBinding, { m_modelConvFilterWeights[5].Get(), 0, m_modelConvFilterWeights[5]->GetDesc().Width }, { m_modelConvBiasWeights[5].Get(), 0, m_modelConvBiasWeights[5]->GetDesc().Width } },
{ emptyBufferBinding, { m_modelConvFilterWeights[6].Get(), 0, m_modelConvFilterWeights[6]->GetDesc().Width }, emptyBufferBinding } // last layer has no bias
};
DML_BUFFER_ARRAY_BINDING convBufferArrayBindings[] = {
{ 3, convBufferBindings[0] },
{ 3, convBufferBindings[1] },
{ 3, convBufferBindings[2] },
{ 3, convBufferBindings[3] },
{ 3, convBufferBindings[4] },
{ 3, convBufferBindings[5] },
{ 3, convBufferBindings[6] },
};
DML_BINDING_DESC convInBindings[] = {
{ DML_BINDING_TYPE_BUFFER_ARRAY, &convBufferArrayBindings[0] },
{ DML_BINDING_TYPE_BUFFER_ARRAY, &convBufferArrayBindings[1] },
{ DML_BINDING_TYPE_BUFFER_ARRAY, &convBufferArrayBindings[2] },
{ DML_BINDING_TYPE_BUFFER_ARRAY, &convBufferArrayBindings[3] },
{ DML_BINDING_TYPE_BUFFER_ARRAY, &convBufferArrayBindings[4] },
{ DML_BINDING_TYPE_BUFFER_ARRAY, &convBufferArrayBindings[5] },
{ DML_BINDING_TYPE_BUFFER_ARRAY, &convBufferArrayBindings[6] }
};
initBindingTable->BindInputs(c_numConvLayers, convInBindings);
#else
initBindingTable->BindInputs(0, nullptr);
#endif
// If the operator requires a persistent resource, it must be bound as output for the initializer.
DML_BUFFER_BINDING convPersistentBuffers[c_numConvLayers];
DML_BINDING_DESC convPersistentBindings[c_numConvLayers];
for (int i = 0; i < c_numConvLayers; i++)
{
if (m_modelConvPersistentResources[i].Get() != nullptr)
{
convPersistentBuffers[i] = { m_modelConvPersistentResources[i].Get(), 0, m_modelConvPersistentResources[i]->GetDesc().Width };
convPersistentBindings[i] = { DML_BINDING_TYPE_BUFFER, &convPersistentBuffers[i] };
}
else
convPersistentBindings[i] = emptyBindingDesc;
}
initBindingTable->BindOutputs(c_numConvLayers, convPersistentBindings);
BindTempResourceIfNeeded(bindingProps, initBindingTable.Get(), m_modelInitTemporaryResources[e_opConv].ReleaseAndGetAddressOf());
// Run initialization
m_dmlCommandRecorder->RecordDispatch(commandList, m_dmlOpInitializers[e_opConv].Get(), initBindingTable.Get());
// Bind resources for execution
for (int i = 0; i < c_numConvLayers; i++)
{
bindingProps = m_dmlConvOps[i]->GetBindingProperties();
tableDesc = {
m_dmlConvOps[i].Get(),
m_dmlDescriptorHeap->GetCpuHandle(convDescriptorsIdx + i * convOpDescriptorCount),
m_dmlDescriptorHeap->GetGpuHandle(convDescriptorsIdx + i * convOpDescriptorCount),
bindingProps.RequiredDescriptorCount
};
DX::ThrowIfFailed(m_dmlDevice->CreateBindingTable(&tableDesc, IID_PPV_ARGS(m_dmlConvBindings[i].ReleaseAndGetAddressOf())));
// See table at the beginning of the function for the mapping of ops to resources.
auto inputResource = (i == 0) ? m_modelInput : ((i == 1 || i == 4 || i == 6) ? m_modelIntermediateResult[0] : m_modelIntermediateResult[1]);
auto outputResource = (i == 1 || i == 4 || i == 6) ? m_modelIntermediateResult[1] : m_modelIntermediateResult[0];
DML_BUFFER_BINDING inputBufferBinding = { inputResource.Get(), 0, inputResource->GetDesc().Width };
DML_BINDING_DESC inputBinding = { DML_BINDING_TYPE_BUFFER, &inputBufferBinding };
DML_BUFFER_BINDING outputBufferBinding = { outputResource.Get(), 0, outputResource->GetDesc().Width };
DML_BINDING_DESC outputBinding = { DML_BINDING_TYPE_BUFFER, &outputBufferBinding };
#if DML_MANAGED_WEIGHTS
// The weights are stored in the persistent resource and shouldn't be bound separately.
DML_BINDING_DESC inputBindings[] = { inputBinding, emptyBindingDesc, emptyBindingDesc };
#else
// Bind the weight resources
DML_BUFFER_BINDING filterBufferBinding = { m_modelConvFilterWeights[i].Get(), 0, m_modelConvFilterWeights[i]->GetDesc().Width };
DML_BINDING_DESC filterBinding = { DML_BINDING_TYPE_BUFFER, &filterBufferBinding };
DML_BUFFER_BINDING biasBufferBinding;
DML_BINDING_DESC biasBinding;
if (i == 6)
{
biasBinding = emptyBindingDesc; // last layer has no bias
}
else
{
biasBufferBinding = { m_modelConvBiasWeights[i].Get(), 0, m_modelConvBiasWeights[i]->GetDesc().Width };
biasBinding = { DML_BINDING_TYPE_BUFFER, &biasBufferBinding };
}
DML_BINDING_DESC inputBindings[] = { inputBinding, filterBinding, biasBinding };
#endif
m_dmlConvBindings[i]->BindInputs(3, inputBindings);
m_dmlConvBindings[i]->BindOutputs(1, &outputBinding);
BindTempResourceIfNeeded(bindingProps, m_dmlConvBindings[i].Get(), m_modelConvTemporaryResources[i].ReleaseAndGetAddressOf());
if (m_modelConvPersistentResources[i].Get() != nullptr)
m_dmlConvBindings[i]->BindPersistentResource(&convPersistentBindings[i]);
}
}
// Addition layer
{
// Bind resources for initialization.
auto bindingProps = m_dmlOpInitializers[e_opAdd]->GetBindingProperties();
assert(bindingProps.PersistentResourceSize == 0);
DML_BINDING_TABLE_DESC tableDesc = {
m_dmlOpInitializers[e_opAdd].Get(),
m_dmlDescriptorHeap->GetCpuHandle(additionDescriptorsIdx),
m_dmlDescriptorHeap->GetGpuHandle(additionDescriptorsIdx),
bindingProps.RequiredDescriptorCount
};
DX::ThrowIfFailed(initBindingTable->Reset(&tableDesc));
// If the operator requires a persistent resource, it must be bound as output for the initializer.
DML_BUFFER_BINDING addPersistentBuffer;
DML_BINDING_DESC addPersistentBinding;
if (m_modelAddPersistentResource.Get() != nullptr)
{
addPersistentBuffer = { m_modelAddPersistentResource.Get(), 0, m_modelAddPersistentResource->GetDesc().Width };
addPersistentBinding = { DML_BINDING_TYPE_BUFFER, &addPersistentBuffer };
}
else
addPersistentBinding = emptyBindingDesc;
initBindingTable->BindInputs(0, nullptr);
initBindingTable->BindOutputs(1, &addPersistentBinding);
BindTempResourceIfNeeded(bindingProps, initBindingTable.Get(), m_modelInitTemporaryResources[e_opAdd].ReleaseAndGetAddressOf());
// Run initialization
m_dmlCommandRecorder->RecordDispatch(commandList, m_dmlOpInitializers[e_opAdd].Get(), initBindingTable.Get());
// Bind resources for execution
{
bindingProps = m_dmlAddResidualOp->GetBindingProperties();
tableDesc = {
m_dmlAddResidualOp.Get(),
m_dmlDescriptorHeap->GetCpuHandle(additionDescriptorsIdx),
m_dmlDescriptorHeap->GetGpuHandle(additionDescriptorsIdx),
bindingProps.RequiredDescriptorCount
};
DX::ThrowIfFailed(m_dmlDevice->CreateBindingTable(&tableDesc, IID_PPV_ARGS(m_dmlAddResidualBinding.ReleaseAndGetAddressOf())));
// m_modelOutput will already hold the result of the first upsample operation. We add the result of
// the last convolution (the residual) to it in-place to get the final result.
DML_BUFFER_BINDING input0BufferBinding = { m_modelIntermediateResult[1].Get(), 0, m_modelIntermediateResult[1]->GetDesc().Width };
DML_BINDING_DESC input0Binding = { DML_BINDING_TYPE_BUFFER, &input0BufferBinding };
DML_BUFFER_BINDING input1BufferBinding = { m_modelOutput.Get(), 0, m_modelOutput->GetDesc().Width };
DML_BINDING_DESC input1Binding = { DML_BINDING_TYPE_BUFFER, &input1BufferBinding };
DML_BUFFER_BINDING outputBufferBinding = { m_modelOutput.Get(), 0, m_modelOutput->GetDesc().Width };
DML_BINDING_DESC outputBinding = { DML_BINDING_TYPE_BUFFER, &outputBufferBinding };
DML_BINDING_DESC inputBindings[] = { input0Binding, input1Binding };
m_dmlAddResidualBinding->BindInputs(2, inputBindings);
m_dmlAddResidualBinding->BindOutputs(1, &outputBinding);
BindTempResourceIfNeeded(bindingProps, m_dmlAddResidualBinding.Get(), m_modelAddTemporaryResource.ReleaseAndGetAddressOf());
if (m_modelAddPersistentResource.Get() != nullptr)
m_dmlAddResidualBinding->BindPersistentResource(&addPersistentBinding);
}
}
DX::ThrowIfFailed(commandList->Close());
m_deviceResources->GetCommandQueue()->ExecuteCommandLists(1, CommandListCast(&commandList));
// Wait until initialization has been finished on the GPU.
m_deviceResources->WaitForGpu();
#if DML_MANAGED_WEIGHTS
// These have been copied to DML-managed resources and are no longer needed.
for (int i = 0; i < c_numConvLayers; i++)
{
m_modelConvFilterWeights[i].Reset();
if (i < c_numConvLayers - 1) // Last layer has no bias
{
m_modelConvBiasWeights[i].Reset();
}
}
#endif
}
void Sample::CreateUpsampleLayer(
_In_reads_(4) const uint32_t* inputSizes,
_Inout_updates_(1) uint64_t* inputBufferRequiredSize,
_Inout_updates_(1) uint64_t* outputBufferRequiredSize,
_Out_writes_(4) uint32_t* outputSizesOut,
_Out_writes_(1) IDMLCompiledOperator** compiledOpOut)
{
// Describe input and output tensors
uint32_t inputStrides[4];
Sample::GetStrides(inputSizes, m_tensorLayout, inputStrides);
uint64_t inputBufferSize = DMLCalcBufferTensorSize(DML_TENSOR_DATA_TYPE_FLOAT16, 4, inputSizes, inputStrides);
// Because we can resuse resources for tensor storage, this tracks the resource size needed to hold the
// largest possible tensor requested.
*inputBufferRequiredSize = std::max(inputBufferSize, *inputBufferRequiredSize);
DML_BUFFER_TENSOR_DESC inputBufferDesc = { DML_TENSOR_DATA_TYPE_FLOAT16, DML_TENSOR_FLAG_NONE, 4, inputSizes, inputStrides, inputBufferSize, 0 };
DML_TENSOR_DESC inputDesc = { DML_TENSOR_TYPE_BUFFER, &inputBufferDesc };
// Output size is double in height and width
outputSizesOut[0] = inputSizes[0];
outputSizesOut[1] = inputSizes[1];
outputSizesOut[2] = inputSizes[2] * 2;
outputSizesOut[3] = inputSizes[3] * 2;
uint32_t outputStrides[4];
Sample::GetStrides(outputSizesOut, m_tensorLayout, outputStrides);
uint64_t outputBufferSize = DMLCalcBufferTensorSize(DML_TENSOR_DATA_TYPE_FLOAT16, 4, outputSizesOut, outputStrides);
*outputBufferRequiredSize = std::max(outputBufferSize, *outputBufferRequiredSize);
DML_BUFFER_TENSOR_DESC outputBufferDesc = { DML_TENSOR_DATA_TYPE_FLOAT16, DML_TENSOR_FLAG_NONE, 4, outputSizesOut, outputStrides, outputBufferSize, 0 };
DML_TENSOR_DESC outputDesc = { DML_TENSOR_TYPE_BUFFER, &outputBufferDesc };
// Describe, create, and compile upsample operator
DML_UPSAMPLE_2D_OPERATOR_DESC upsampleDesc = { &inputDesc, &outputDesc, {2, 2}, DML_INTERPOLATION_MODE_NEAREST_NEIGHBOR };
DML_OPERATOR_DESC opDesc = { DML_OPERATOR_UPSAMPLE_2D, &upsampleDesc };
ComPtr<IDMLOperator> op;
DX::ThrowIfFailed(m_dmlDevice->CreateOperator(&opDesc, IID_PPV_ARGS(op.ReleaseAndGetAddressOf())));
DX::ThrowIfFailed(m_dmlDevice->CompileOperator(op.Get(), DML_EXECUTION_FLAG_ALLOW_HALF_PRECISION_COMPUTATION, IID_PPV_ARGS(compiledOpOut)));
}
void Sample::CreateConvolutionLayer(
_In_reads_(4) const uint32_t* inputSizes,
_In_reads_(4) const uint32_t* filterSizes,
bool useBiasAndActivation,
_Inout_updates_(1) uint64_t* inputBufferRequiredSize,
_Inout_updates_(1) uint64_t* outputBufferRequiredSize,
_Out_writes_(4) uint32_t* outputSizesOut,
_Out_writes_(1) IDMLCompiledOperator** compiledOpOut)
{
// Describe input and output tensors
uint32_t inputStrides[4];
Sample::GetStrides(inputSizes, m_tensorLayout, inputStrides);
uint64_t inputBufferSize = DMLCalcBufferTensorSize(DML_TENSOR_DATA_TYPE_FLOAT16, 4, inputSizes, inputStrides);
*inputBufferRequiredSize = std::max(inputBufferSize, *inputBufferRequiredSize);
DML_BUFFER_TENSOR_DESC inputBufferDesc = { DML_TENSOR_DATA_TYPE_FLOAT16, DML_TENSOR_FLAG_NONE, 4, inputSizes, inputStrides, inputBufferSize, 0 };
DML_TENSOR_DESC inputDesc = { DML_TENSOR_TYPE_BUFFER, &inputBufferDesc };
// The output shape has as many channels as there are convolution filters.
outputSizesOut[0] = inputSizes[0];
outputSizesOut[1] = filterSizes[0];
outputSizesOut[2] = inputSizes[2];
outputSizesOut[3] = inputSizes[3];
uint32_t outputStrides[4];
Sample::GetStrides(outputSizesOut, m_tensorLayout, outputStrides);
uint64_t outputBufferSize = DMLCalcBufferTensorSize(DML_TENSOR_DATA_TYPE_FLOAT16, 4, outputSizesOut, outputStrides);
*outputBufferRequiredSize = std::max(outputBufferSize, *outputBufferRequiredSize);
DML_BUFFER_TENSOR_DESC outputBufferDesc = { DML_TENSOR_DATA_TYPE_FLOAT16, DML_TENSOR_FLAG_NONE, 4, outputSizesOut, outputStrides, outputBufferSize, 0 };
DML_TENSOR_DESC outputDesc = { DML_TENSOR_TYPE_BUFFER, &outputBufferDesc };
// Describe weight tensors
uint32_t filterStrides[4];
Sample::GetStrides(filterSizes, m_tensorLayout, filterStrides);
uint64_t filterBufferSize = DMLCalcBufferTensorSize(DML_TENSOR_DATA_TYPE_FLOAT16, 4, filterSizes, filterStrides);
#if DML_MANAGED_WEIGHTS
DML_BUFFER_TENSOR_DESC filterBufferDesc = { DML_TENSOR_DATA_TYPE_FLOAT16, DML_TENSOR_FLAG_OWNED_BY_DML, 4, filterSizes, filterStrides, filterBufferSize, 0 };
#else
DML_BUFFER_TENSOR_DESC filterBufferDesc = { DML_TENSOR_DATA_TYPE_FLOAT16, DML_TENSOR_FLAG_NONE, 4, filterSizes, filterStrides, filterBufferSize, 0 };
#endif
DML_TENSOR_DESC filterDesc = { DML_TENSOR_TYPE_BUFFER, &filterBufferDesc };
uint32_t biasSizes[] = { 1, filterSizes[0], 1, 1 }; // One bias per output channel
uint32_t biasStrides[4];
Sample::GetStrides(biasSizes, m_tensorLayout, biasStrides);
uint64_t biasBufferSize = DMLCalcBufferTensorSize(DML_TENSOR_DATA_TYPE_FLOAT16, 4, biasSizes, biasStrides);
#if DML_MANAGED_WEIGHTS
DML_BUFFER_TENSOR_DESC biasBufferDesc = { DML_TENSOR_DATA_TYPE_FLOAT16, DML_TENSOR_FLAG_OWNED_BY_DML, 4, biasSizes, biasStrides, biasBufferSize, 0 };
#else
DML_BUFFER_TENSOR_DESC biasBufferDesc = { DML_TENSOR_DATA_TYPE_FLOAT16, DML_TENSOR_FLAG_NONE, 4, biasSizes, biasStrides, biasBufferSize, 0 };
#endif
DML_TENSOR_DESC biasDesc = { DML_TENSOR_TYPE_BUFFER, &biasBufferDesc };
// Describe, create, and compile convolution operator
// The output size of a convolution operation is given by:
// height = (inputHeight - filterHeight + 2*paddingHeight) / filterStride + 1
// width = (inputWidth - filterWidth + 2*paddingWidth ) / filterStride + 1
//
// We want to preserve the height and width, so assuming stride is 1, we get:
// paddingHeight = (filterHeight - 1) / 2
// paddingWidth = (filterWidth - 1) / 2
// If padding is fractional, we pad unevenly with ceil/floor.
UINT paddingHeightTop = static_cast<UINT>(ceil((filterSizes[2] - 1) / 2.0f));
UINT paddingHeightBottom = static_cast<UINT>(floor((filterSizes[2] - 1) / 2.0f));
UINT paddingWidthLeft = static_cast<UINT>(ceil((filterSizes[3] - 1) / 2.0f));
UINT paddingWidthRight = static_cast<UINT>(floor((filterSizes[3] - 1) / 2.0f));
UINT strides[] = { 1, 1 };
UINT dilations[] = { 1, 1 };
UINT startPadding[] = { paddingHeightTop, paddingWidthLeft };
UINT endPadding[] = { paddingHeightBottom, paddingWidthRight };
UINT outputPadding[] = { 0, 0 };
DML_ACTIVATION_RELU_OPERATOR_DESC fusedReluDesc = { 0 };
DML_OPERATOR_DESC activationDesc = { DML_OPERATOR_ACTIVATION_RELU, &fusedReluDesc };
DML_CONVOLUTION_OPERATOR_DESC convDesc = {
&inputDesc,
&filterDesc,
useBiasAndActivation ? &biasDesc : nullptr,
&outputDesc,
DML_CONVOLUTION_MODE_CROSS_CORRELATION,
DML_CONVOLUTION_DIRECTION_FORWARD,
2,
strides,
dilations,
startPadding,
endPadding,
outputPadding,
1,
useBiasAndActivation ? &activationDesc : nullptr
};
DML_OPERATOR_DESC opDesc = { DML_OPERATOR_CONVOLUTION, &convDesc };
ComPtr<IDMLOperator> op;
DX::ThrowIfFailed(m_dmlDevice->CreateOperator(&opDesc, IID_PPV_ARGS(op.ReleaseAndGetAddressOf())));
DX::ThrowIfFailed(m_dmlDevice->CompileOperator(op.Get(), DML_EXECUTION_FLAG_ALLOW_HALF_PRECISION_COMPUTATION, IID_PPV_ARGS(compiledOpOut)));
}
void Sample::CreateAdditionLayer(
_In_reads_(4) const uint32_t* inputSizes,
_Out_writes_(1) IDMLCompiledOperator** compiledOpOut)
{
// Describe input and output tensors
uint32_t strides[4];
Sample::GetStrides(inputSizes, m_tensorLayout, strides);
uint64_t bufferSize = DMLCalcBufferTensorSize(DML_TENSOR_DATA_TYPE_FLOAT16, 4, inputSizes, strides);
DML_BUFFER_TENSOR_DESC bufferDesc = { DML_TENSOR_DATA_TYPE_FLOAT16, DML_TENSOR_FLAG_NONE, 4, inputSizes, strides, bufferSize, 0 };
DML_TENSOR_DESC tensorDesc = { DML_TENSOR_TYPE_BUFFER, &bufferDesc };
// Describe, create, and compile elementwise addition operator
// Inputs and output are all the same size and use the same tensor desc.
DML_ELEMENT_WISE_ADD_OPERATOR_DESC addDesc = { &tensorDesc, &tensorDesc, &tensorDesc };
DML_OPERATOR_DESC opDesc = { DML_OPERATOR_ELEMENT_WISE_ADD, &addDesc };
ComPtr<IDMLOperator> op;
DX::ThrowIfFailed(m_dmlDevice->CreateOperator(&opDesc, IID_PPV_ARGS(op.ReleaseAndGetAddressOf())));
DX::ThrowIfFailed(m_dmlDevice->CompileOperator(op.Get(), DML_EXECUTION_FLAG_ALLOW_HALF_PRECISION_COMPUTATION, IID_PPV_ARGS(compiledOpOut)));
}