-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnn_train.py
40 lines (35 loc) · 868 Bytes
/
nn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import nn_bagging_sample
nn_params = [
{'feature_type': 'scaled_num_onehot_cat',
'n_bags': 2,
'layer1': 97,
'layer2': 30,
'layer1_dp': 0.15,
'layer2_dp': 0.1},
{'feature_type': 'scaled_num_onehot_cat',
'n_bags': 2,
'layer1': 51,
'layer2': 39,
'layer1_dp': 0.1,
'layer2_dp': 0.1},
{'feature_type': 'scaled_num_counts_cat',
'n_bags': 2,
'layer1': 164,
'layer2': 112,
'layer3': 64,
'layer1_dp': 0.15,
'layer2_dp': 0.15,
'layer3_dp': 0.1},
{'feature_type': 'svd',
'n_bags': 2,
'layer1': 169,
'layer2': 117,
'layer1_dp': 0.3241,
'layer2_dp': 0.3369}
]
for params in nn_params:
print 'NN params:'
print params
nn_bagging_sample.nn_fit_predict(params)
print 'One nn model is trained!'
print 'All nn models are done!'