-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcommon_CM.m
316 lines (244 loc) · 15.2 KB
/
common_CM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
% Settings for chronic migraine project
%
% this acts as the common #define section for all scripts
%
% Warning: all of the global vars below are treated as CONSTANTS.
% UNDER NO CIRCUMSTANCES should their values be assigned/modified in any other scripts.
%
% Author: Judy Zhu (github.com/JD-Zhu)
%
function [] = common()
% PLEASE SPECIFY THE SETTINGS FOR YOUR PROJECT BELOW %
% 1. Location for your EEG data analysis
% (use absolute paths, to avoid any issues when we 'cd' into diff folders)
ProjectFolder = 'Z:\Analysis\Macefield Lab\Bec\';
global SUBJ_GROUP;
SUBJ_GROUP = 'controls'; % Options: 'patients', 'controls'
global DataFolder;
DataFolder = [ProjectFolder 'data\' SUBJ_GROUP '\']; % this directory should contain all the SubjectFolders
ResultsFolder = [ProjectFolder 'results\' SUBJ_GROUP '\']; % all subjects' freq analysis results will be stored here
ResultsFolder_conn = [ProjectFolder 'results_conn\' SUBJ_GROUP '\']; % all subjects' connectivity results will be stored here
% 2. Specify a list of subjects to analyse
global SubjectIDs;
% Option 1: find all subject folders inside DataFolder
SubjectIDs = dir([DataFolder 'Subject*']);
% you can modify the list in a few ways:
%SubjectIDs = [dir([DataFolder 'A*']); dir([DataFolder 'B*'])]; % combine two lists
%SubjectIDs = SubjectIDs([2 3 6]); % only process selected subjects
%SubjectIDs([2 13 25]) = []; % remove certain subjects from the list
SubjectIDs = {SubjectIDs.name}; % extract the names into a cell array
% Option 2: manually specify the subject codes
%SubjectIDs = {'9031_S1'};%, '9011_S1'};
% 3. Which EEG system did you use to collect the data?
EEG_system = 'NeuroPrax32'; % Options: 'AntNeuro64', 'NeuroPrax32'
% these custom layout files for each system were made using prepare_layout_and_neighbours.m
global LAYOUT_FILE; global NEIGHBOURS_FILE; global ALL_LABELS_FILE; global ELEC_FILE;
LAYOUT_FILE = ['lay_' EEG_system '.mat'];
NEIGHBOURS_FILE = ['neighbours_' EEG_system '.mat'];
ALL_LABELS_FILE = ['all_labels_' EEG_system '.mat'];
ELEC_FILE = ['elec_' EEG_system '.mat'];
% actual EEG channels
%global EEG_chans;
%EEG_chans = [1:12 14:18 20:31 33:64]; % M1=13, M2=19, EOG=32
global CONFILE_NAME; % name of the raw data file in each subject folder (can use wildcards)
global ONLINE_REF; % specify the online ref channel for this EEG system (if you want to add it back into the data during reref)
if strcmp(EEG_system, 'AntNeuro64')
CONFILE_NAME = '*.eeg';
ONLINE_REF = 'CPz';
elseif strcmp(EEG_system, 'NeuroPrax32')
CONFILE_NAME = 'EC\*.edf';
ONLINE_REF = '';
end
% 4. Options for preprocessing & single-subject analysis (main.m)
% (1) create a name for this run (this will create a separate output & Figures folder)
global run_name;
run_name = 'EC'; %'noICA';
global file_suffix; % only used in main_migraine.m right now - can we get rid of this?
file_suffix = ''; %'_minReject': only reject a noisy chan if it's utterly crazy - keep where possible (note: all flat channels must still be rejected)
% (2) offline rereferencing using "average reference" or "linked mastoid"?
global REREF;
REREF = 'AR'; % Options: 'AR', 'LM'
if strcmp(REREF, 'LM')
run_name = [run_name '_LMref'];
end
% (3) for connectivity analysis ONLY - apply surface Laplacian to deal with volumn conduction issue?
global APPLY_SL;
APPLY_SL = true;
% (4) include infra-slow oscillations in the analysis?
global ANALYSE_ISO;
ANALYSE_ISO = true;
% specify which freq bands to analyse
global FREQ_BANDS;
if ANALYSE_ISO
FREQ_BANDS = {{'infraslow'},0.03:0.01:0.06; {'theta'},4:8; {'alpha'},9:12; {'beta'},13:25};
else
FREQ_BANDS = {{'theta'},4:8; {'alpha'},9:12; {'beta'},13:25};
end
% (5) which preprocessing steps to run?
global DO_HPF; global FILTERS; global PLOT_CHANNEL_SPECTRA;
global DO_ICA; global FILTER_AGAIN_BEFORE_ICA; global FILTERS_for_ICA;
global CHANNEL_REPAIR; global DO_BEH_CHECK; global DO_PCA;
global DOWNSAMPLE; % set this to 0 if no downsampling needed (e.g. for chronic migraine data acquired at 125Hz sampling rate)
DO_HPF = true;
FILTERS = [0.01 0.02 35 10]; % HPF 0.01+-0.01Hz; LPF 35+-5Hz
PLOT_CHANNEL_SPECTRA = false; % during initial data inspection, plot channel spectra to help with determining bad channels?
% Note: channel spectra is plotted on raw data (i.e. without filtering)
DO_ICA = true; % a useful method for removing eye artefact etc
FILTER_AGAIN_BEFORE_ICA = true; % for MEG (a lot more channels), we prob don't need to apply 1Hz HPF before running ICA (so set this to false)
% for EEG, this step is recommended, otherwise ICA will just detect all the slow drifts & nothing useful
% (https://www.youtube.com/watch?v=2hrYEYSycGI https://jinjeon.me/post/eeg-advanced/)
% I tried it on SCI data - ICA decomposition was indeed poor quality if we don't apply another HPF first
FILTERS_for_ICA = [0.1 0.2 FILTERS(3) FILTERS(4)]; % use the original LPF settings (so that we have consistent data to run ICA on)
% The new HPF doesn't have to be 1Hz, which actually removed most of the eye artefact (0.5Hz removed quite a lot too);
% 0.1+-0.1Hz seems to work well for the SCI project (whereas wider transition bands caused too many slow drift components)
CHANNEL_REPAIR = true; % interpolate rejected channels?
% must set to true if using "average reference", as channel rejection leads to unbalanced reref
DOWNSAMPLE = 0; % no downsampling
DO_BEH_CHECK = false; % if subjects produced beh responses, set this to true
DO_PCA = false; % if subjects produced vocal responses, set this to true
% when running many subjects in one batch, process all auto steps until the next manual step
global RUN_UP_TO_BEFORE_MANUAL_ARTEFACT; global RUN_UP_TO_AFTER_MANUAL_ARTEFACT;
global RUN_UP_TO_ICA; global RUN_UP_TO_ICA_REJECTION; global BROWSING_WITHOUT_SAVE;
RUN_UP_TO_BEFORE_MANUAL_ARTEFACT = false; % auto processing before 1st manual step
RUN_UP_TO_AFTER_MANUAL_ARTEFACT = false; % perform 1st manual step (mark artefact & reject bad channels)
RUN_UP_TO_ICA = false; % auto processing before 2nd manual step (ICA component analysis)
RUN_UP_TO_ICA_REJECTION = false; % perform 2nd manual step (select ICA comps to reject)
BROWSING_WITHOUT_SAVE = false; % browse filtered data - do not save arft & selChLabels
% locations to save the output
global output_name; % for intermediate output files during preprocessing (so that we don't have to rerun the whole thing from beginning every time)
global ResultsFolder_thisrun; global ResultsFolder_conn_thisrun; % results for all subjects
output_name = ['output\\' run_name '\\']; % TODO (future): separate these from the DataFolder - put them in a separate "preprocessed" folder at the top level
ResultsFolder_thisrun = [ResultsFolder run_name '\\'];
ResultsFolder_conn_thisrun = [ResultsFolder_conn run_name '\\'];
% filenames for saving the intermediate output from each stage of preprocessing
global S1_output_filename; global S3_output_filename; global S4_output_filename;
S1_output_filename = ['S1_preprocessed_data' file_suffix '.mat']; % Stage 1 output (stored inside each Subject folder under output_name)
%S2_output_filename = ['S2_after_visual_rejection' file_suffix '.mat']; % Stage 2 output (stored inside each Subject folder under output_name)
S3_output_filename = [file_suffix '.mat']; % Final output for freq analysis (stored in ResultsFolder for all subjects)
S4_output_filename = [file_suffix '.mat']; % Final output for connectivity analysis (stored in ResultsFolder_conn for all subjects)
% (6) special troubleshooting steps for old episodic migraine data only
global EPISODIC_ONLY;
EPISODIC_ONLY = false;
% 5. Options for grand average & excel export (stats_FREQ.m)
% (1) are we working with connectivity results here?
global is_conn; % this setting is not just for setting the correct folder below - it's being used in a number of places in stats_FREQ.m
is_conn = false;
% (2) specify a list of subjects to compute GA on
% this can be subjects belonging to a particular sub-group (e.g. prodromes / postdromes / interictals) - see common_EM for examples,
% or leave empty to use all subjects in the ResultsFolder (i.e. all patients / all controls)
global SubjectIDs_GA;
SubjectIDs_GA = [];
% if subject list is empty, then use all results files in the folder
if isempty(SubjectIDs_GA)
SubjectIDs_GA = dir([ResultsFolder_thisrun '*.mat']);
SubjectIDs_GA = {SubjectIDs_GA.name}; % extract the names into a cell array
SubjectIDs_GA = cellfun(@(x) x(1:end-4), SubjectIDs_GA, 'un', 0); % remove the '.mat' extension
end
% (3) exporting to excel
global FREQ_FIELD; % for fixing up the "freq" field in results (for some reason the freqs are not whole numbers)
global FREQS_TO_EXPORT; % if analysing ISO, only export certain freqs to excel (coz we computed 3001 freq points: 0:0.01:30)
if ANALYSE_ISO
FREQ_FIELD = 0:0.01:30;
FREQS_TO_EXPORT = [0.02:0.01:0.09 0.1:0.1:0.9 1:30];
else
FREQ_FIELD = 1:30;
FREQS_TO_EXPORT = FREQ_FIELD;
end
% 6. Plot settings
global PLOT_XLIM; %global ERF_BASELINE; global ROI_BASELINE;
% for FREQ plots
if ANALYSE_ISO
PLOT_XLIM = [1 30]; % anything below 1Hz is way over powered (rendering the whole plot unviewable)
else
PLOT_XLIM = [2 30]; % for old episodic migraine data, we are interested in 2-30Hz (everything below 2Hz was already filtered out?)
end
% for ERP plots
%PLOT_XLIM = [-0.2 0.6];
%ERF_BASELINE = [-0.2 0];
%ROI_BASELINE = [-0.2 0];
%global TFR_BASELINE;
%TFR_BASELINE = [-0.75 0];
% Plot shaded patch around time-course plots?
% Options: 'no', 'SEM', 'STDEV', 'CI_95'
% (note: SEM < 95% CI < STDEV)
global PLOT_SHADE;
%PLOT_SHADE = 'SEM';
PLOT_SHADE = 'no'; % TEMP FIX - bounded_lines throws an error in stats_ROI!
% Do we want to use a combination of diff colours & line types to
% distinguish btwn conds? if no, we'll only use diff colours
%{
global colours_and_lineTypes;
colours_and_lineTypes = true;
numConds = length(eventnames_real); % total number of conds to plot
numCategories = 3; % ('Bi','Nat','Art')
% All ttypes in each context will be same colour.
% Note: this var is only applicable when
% colours_and_lineTypes is set to 'true'.
% colours for time course plots (one colour for each condition):
% need to specify manually because we plot each cond separately, and simply
% using default colourmap makes all lines the same colour when calling boundedline()
global colours; global lineTypes;
if (colours_and_lineTypes)
colours = {'g','g','g','b','b','b','r','r','r'};
%colours = repelem(colour_list, numConds/numCategories, 1); % repeat each colour 3 times: [1 1 1 2 2 2 3 3 3]
lineTypes = repmat({'-', '--', ':'}, [1 numConds/numCategories]); % {'-', '--', ':', '-', '--', ':', '-', '--', ':'}
else
% only 6 unique colours below, need more colours (we have 9 conds)!
%colours = ['b', 'r', 'g', 'k', 'y', 'm', 'b', 'r', 'g', 'k', 'y', 'm'];
colour_list = distinguishable_colors(numConds);
% include the seq twice, once for the lines, once for the shaded boundaries
%colours = ['b', 'r', 'y', 'm', 'b', 'r', 'y', 'm'];
colours = [colour_list; colour_list];
% set line type to default (solid line)
lineTypes = repmat({'-'}, [1 numConds]); % set to '-' for all conds
lineTypes = [lineTypes lineTypes]; % repeat again for the shaded boundaries?
end
%}
% =================================================================
% addpath to access custom functions in all subfolders
addpath(genpath(pwd));
% toolbox to plot shaded boundary around each timecourse
%addpath(genpath('C:\Users\Judy\Documents\MATLAB\kakearney-boundedline-pkg-50f7e4b'));
% toolbox to save figure exactly as it appears on screen
%addpath(genpath('C:\Users\Judy\Documents\MATLAB\altmany-export_fig-9676767'));
% =================================================================
%{
% Using photodetector to adjust for screen delay
% -> use each individual trigger time or the median screen delay?
% Options: 'median', 'individual_trial'
global ADJUST_SCREEN_DELAY;
ADJUST_SCREEN_DELAY = 'median'; % 'individual' is more valid than 'median'
% trigger events (DO NOT change the order of this list)
global eventcodes; global eventnames; global eventnames_real;
eventcodes = {...
{'NatStayC'},{'17'};{'NatStayE'},{'18'};{'NatSwitchC'},{'19'};{'NatSwitchE'},{'20'};{'NatSingleC'},{'21'};{'NatSingleE'},{'22'}; ...
{'ArtStayC'},{'23'};{'ArtStayE'},{'24'};{'ArtSwitchC'},{'25'};{'ArtSwitchE'},{'26'};{'ArtSingleC'},{'27'};{'ArtSingleE'},{'28'}; ...
{'BiStayC'},{'37'};{'BiStayE'},{'38'};{'BiSwitchC'},{'39'};{'BiSwitchE'},{'40'};{'BiSingleC'},{'41'};{'BiSingleE'},{'42'}; ...
{'response'},{'30'}};
eventnames = eventcodes(:,1); % extract a list of all event names
eventnames = [eventnames{:}]; % convert into strings
eventnames_real = eventnames(1:18); % exclude the 'response' event, which is not a real cond
% for AEF pilot, we don't have "bivalent" conds, so only use the first 12 conds
%eventnames = eventnames(1:12);
% do we want to collapse across Eng & Chn?
global collapse_across_langs;
collapse_across_langs = true;
if (collapse_across_langs)
eventnames_real = eventnames_real([2,4,6,8,10,12,14,16,18]); % only take 1 from every pair of eventnames
eventnames_real = cellfun(@(x) x(1:end-1), eventnames_real, 'UniformOutput', false); % strip the last char (indicating which lang)
end
%eventnames_real = eventnames_real([1 2 3 6 9]); % partial exp (Natuni & singleLang only)
%}
% from exp 1:
%{
eventcodes = {{'cuechstay'},{'17'};{'cuechswitch'},{'19'};{'cueenstay'},{'21'};{'cueenswitch'},{'23'}; ...
{'targetchstay'},{'18'};{'targetchswitch'},{'20'};{'targetenstay'},{'22'};{'targetenswitch'},{'24'};{'response'},{'30'}};
eventnames = eventcodes(:,1); % extract a list of all event names
eventnames = [eventnames{:}]; % convert into strings
% for ease of reference to the conditions in cue window & target window
global conds_cue; global conds_target;
conds_cue = 1:4;
conds_target = 5:8;
eventnames_8 = eventnames([conds_cue conds_target]); % 8 actual event types
%}
end