-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_stg2.py
204 lines (159 loc) · 8.43 KB
/
main_stg2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
import sys
import os
import argparse
import logging
from pathlib import Path
import pandas as pd
import yaml
import numpy as np
import csv
from collections import OrderedDict
from timm.scheduler import create_scheduler
from timm.utils import *
from timm.models import resume_checkpoint
import torch
from torch.utils.data import Dataset
import torch.optim as optim
from data.dataset import WSIDataset
from models.SSRViT import SViT
from engine_stg2 import train_slides, eval_slides
from utils.utils import init_distributed_mode, get_rank
from utils.losses import focal_loss
_logger = logging.getLogger('train')
sys.path.append(os.path.dirname(os.path.abspath(__file__) + '/../../'))
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(description='Train and test the wsi classification', add_help=False)
parser.add_argument('--folds', default=5, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--max_patience', default=20, type=int)
parser.add_argument('--img_classes', default=2, type=int)
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--h5', default=True, type=int, help='feature file is .h5 or .pkl')
parser.add_argument('--eval', action='store_true', default=True, help='test process')
parser.add_argument('--model', default='SViT', type=str, help='name of training model')
parser.add_argument('--data_path', default='', type=str, help='dataset path')
parser.add_argument('--csv_path', default='', type=str, help='train/val/test csv path')
parser.add_argument('--output_dir', default='', type=str, help='model & log save path')
parser.add_argument('--focal', type=bool, default=False, help='use focal loss or not')
parser.add_argument('--lr', type=float, default=2e-4, help='learning rate')
parser.add_argument('--warmup-lr', type=float, default=5e-6, help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
parser.add_argument('--GPU', default='1', type=str, help='which GPU to use, default 0')
parser.add_argument('--warmup-epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=5, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
help='number of checkpoints to keep (default: 10)')
def _parse_args():
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
def main():
setup_default_logging()
args, args_text = _parse_args()
device = init_distributed_mode(args)
if args.seed is not None:
random_seed(args.seed, get_rank())
val_auc = []
val_acc = []
for fold in range(args.folds):
_logger.info("************** FOLD (%d/%d) **************" % (fold + 1, args.folds))
csv_path = os.path.join(args.csv_path, 'fold_{}.csv'.format(fold))
df = pd.read_csv(csv_path)
data_path = os.path.join(args.data_path, str(fold))
dataset_train = WSIDataset(data_path, df, h5=args.h5, splits='train')
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=1, num_workers=12, shuffle=True)
dataset_valid = WSIDataset(data_path, df, h5=args.h5, splits='val')
dataloader_valid = torch.utils.data.DataLoader(dataset_valid, batch_size=1, num_workers=12, shuffle=False)
_logger.info(f"Start training for {args.epochs} epochs in fold {fold}")
model = SViT(dim=384, depth=3, num_heads=4, n_classes=args.img_classes)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
_logger.info('number of params: %d', n_parameters)
model.to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
lr_scheduler, num_epochs = create_scheduler(args, optimizer)
if args.focal:
criterion = focal_loss(alpha=[1, 0.75, 0.75], gamma=2, num_classes=3).to(device)
else:
criterion = torch.nn.CrossEntropyLoss().to(device)
output_dir = os.path.join(args.output_dir, str(fold))
if not os.path.isdir(output_dir):
Path(output_dir).mkdir(parents=True, exist_ok=True)
if args.eval:
dataset_test = WSIDataset(data_path, df, h5=args.h5, splits='test')
dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1, num_workers=10, shuffle=False)
eval_path = os.path.join(output_dir, 'model_best.pth.tar')
_ = resume_checkpoint(
model, eval_path,
log_info=args.local_rank == 0)
eval_stats = eval_slides(model, device, dataloader_test, criterion, _logger)
rowd = OrderedDict(epoch=fold)
rowd.update([('eval_' + k, v) for k, v in eval_stats.items()])
with open(os.path.join(args.output_dir, 'summary.csv'), mode='a') as cf:
dw = csv.DictWriter(cf, fieldnames=rowd.keys())
if fold == 0:
dw.writeheader()
dw.writerow(rowd)
val_auc.append(eval_stats["auc"])
val_acc.append(eval_stats["acc"])
continue
early_stop_counter = 0
eval_best = 0.0
max_auc = 0.0
max_acc = 0.0
early_stop = False
best_metric = None
saver = CheckpointSaver(
model=model, optimizer=optimizer, args=args, checkpoint_dir=output_dir,
recovery_dir=output_dir, max_history=args.checkpoint_hist)
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
f.write(args_text)
for epoch in range(0, args.epochs):
train_stats = train_slides(model, device, dataloader_train, optimizer, epoch, criterion, _logger)
eval_stats = eval_slides(model, device, dataloader_valid, criterion, _logger)
eval_best = max(eval_best, eval_stats['acc'] + eval_stats['auc'])
lr_scheduler.step(epoch + 1)
if output_dir is not None:
update_summary(
epoch, train_stats, eval_stats, os.path.join(output_dir, 'summary.csv'),
write_header=best_metric is None)
if saver is not None:
# save proper checkpoint with eval metric
save_metric = eval_stats['acc'] + eval_stats['auc']
best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)
if not eval_best == eval_stats['acc'] + eval_stats['auc']:
early_stop_counter += 1
if early_stop_counter > args.max_patience:
early_stop = True
else:
max_acc = eval_stats['acc']
max_auc = eval_stats['auc']
early_stop_counter = 0
if early_stop:
val_acc.append(max_acc)
val_auc.append(max_auc)
break
val_accmean, val_accstd = np.mean(val_acc), np.std(val_acc)
val_aucmean, val_aucstd = np.mean(val_auc), np.std(val_auc)
_logger.info(f"acc and auc validation mean(std): {val_accmean:.2f} +/- {val_accstd:.2f}"
f" and {val_aucmean * 100:.2f} +/- {val_aucstd * 100:.2f}")
if __name__ == '__main__':
main()