-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_stg1.py
423 lines (354 loc) · 19.5 KB
/
main_stg1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import argparse
import datetime
import numpy as np
import os
import time
import logging
from pathlib import Path
from contextlib import suppress
import yaml
import warnings
warnings.filterwarnings("ignore")
import torch
import torch.utils.data as udata
from timm.models import create_model, load_checkpoint, convert_splitbn_model, resume_checkpoint
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer_v2, optimizer_kwargs
from timm.utils import *
from data.dataset import ImageDataset
from models.SSRViT import SRViT
from utils import utils
from utils.losses import CERCELoss
from engine_stg1 import train_one_epoch, evalknn, extract_features, validate
try:
from apex import amp
from apex.parallel import DistributedDataParallel as ApexDDP
from apex.parallel import convert_syncbn_model
has_apex = True
use_amp = 'apex'
except ImportError:
has_apex = False
use_amp = 'native'
try:
import wandb
has_wandb = True
except ImportError:
has_wandb = False
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('train')
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser('SSRViT training and evaluation script', add_help=False)
# Global & Device parameters
parser.add_argument('--folds', default=5, type=int)
parser.add_argument('--batch-size', default=4, type=int)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--num_classes_img', default=3, type=int, help='number of classes for image classification')
parser.add_argument('--num_classes_tk', default=3, type=int, help='number of classes for token classification')
parser.add_argument('--mask', default=True, type=bool, help='use shrink mask for tokens in training loop')
parser.add_argument('--mil', default=True, type=int, help='if the dataset only contains slide-level label, set True')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
# Dataset parameters
parser.add_argument('--data_path', default='', type=str, help='dataset path')
parser.add_argument('--csv_path', default='', type=str, help='csv path')
parser.add_argument('--input-size', default=1024, type=int, help='input image size')
parser.add_argument('--patch-size', default=32, type=int, help='size of every patch in an input image')
parser.add_argument('--mask_path', default='', type=str, help='path of shrink mask for tokens')
parser.add_argument('--output_dir', default='', type=str, help='model & log save path')
parser.add_argument('--pin-mem', action='store_true', default=False,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--num_workers', default=12, type=int)
parser.add_argument('--repeated_aug', default=False, type=bool)
parser.add_argument('--sample_ratio', default=0.5, type=int, help='sample ratio for faster speed during KNN validation')
parser.set_defaults(pin_mem=True)
# eval & extarct features settings
parser.add_argument('--knn_eval', action='store_true', default=True,
help='Perform knn evaluation (slide-level) in train&test process')
parser.add_argument('--eval', action='store_true', default=False, help='Perform evaluation only')
parser.add_argument('--num_topk', type=int, default=8, help='number of topk for extract features')
parser.add_argument('--feat_path', default='', type=str, help='feature path')
# Model parameters
parser.add_argument('--model', default='SRViT', type=str, help='name of training model')
parser.add_argument('--pretrained', default=False, type=bool, help='use pre_trained model')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', default=True, type=bool, help='exponential moving average of model weights')
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=True, help='')
# Optimizer parameters
parser.add_argument('--amp', action='store_true', default=True,
help='using automatic mixed precision, is loss is nan, please set False!')
parser.add_argument('--sync-bn', action='store_true', default=True,
help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
parser.add_argument('--dist-bn', type=str, default='reduce',
help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
parser.add_argument('--split-bn', action='store_true',
help='Enable separate BN layers per augmentation split.')
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--clip-mode', type=str, default='norm',
help='Gradient clipping mode. One of ("norm", "value", "agc")')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=20, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=5, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# some parameters for debug or other actions
parser.add_argument('--resume', default=None, help='resume from checkpoint')
parser.add_argument('--start_epoch', default=None, type=int, metavar='N', help='start epoch')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--recovery-interval', type=int, default=0, metavar='N',
help='how many batches to wait before writing recovery checkpoint')
parser.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
help='number of checkpoints to keep (default: 10)')
parser.add_argument('--log-wandb', action='store_true', default=False,
help='log training and validation metrics to wandb')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distill', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--local_rank', default=0, type=int, help='node rank for distributed training')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
def _parse_args():
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
def main_folds():
setup_default_logging()
args, args_text = _parse_args()
device = utils.init_distributed_mode(args)
if args.rank == 0 and args.log_wandb:
if has_wandb:
wandb.init(project=args.experiment, config=args)
else:
_logger.warning("You've requested to log metrics to wandb but package not found. "
"Metrics not being logged to wandb, try `pip install wandb`")
# fix the random seed
if args.seed is not None:
random_seed(args.seed, utils.get_rank())
val_auc = []
# cross validation
for fold in range(1, args.folds):
csv_path = os.path.join(args.csv_path, 'fold_{}.csv'.format(fold))
output_path = os.path.join(args.output_dir, str(fold))
if output_path:
Path(output_path).mkdir(parents=True, exist_ok=True)
if args.rank == 0:
_logger.info("************** FOLD (%d/%d) **************" % (fold + 1, args.folds))
# Model settings
if args.model == 'SRViT':
model = SRViT(img_size=args.input_size, num_classes_i=args.num_classes_img, num_classes_t=args.num_classes_tk,
patch_size=args.patch_size, embed_dim=384, depth=9, num_heads=8, mlp_ratio=4., p_emb='4_2',
drop_path_rate=0., skip_lam=2., mix_token=True, return_dense=True, patch_shuffle=True)
else:
model = create_model(
args.model,
pretrained=args.pretrained,
num_classes=args.num_classes_img,
drop_rate=args.drop,
drop_path_rate=args.drop_path)
if args.local_rank == 0:
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
_logger.info('number of params: %d', n_parameters)
# enable split bn (separate bn stats per batch-portion)
num_aug_splits = 0
if args.split_bn:
model = convert_splitbn_model(model, max(num_aug_splits, 2))
model.cuda()
# setup synchronized BatchNorm for distributed training
if args.distributed and args.sync_bn:
assert not args.split_bn
if has_apex and use_amp == 'apex':
# Apex SyncBN preferred unless native amp is activated
model = convert_syncbn_model(model)
else:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args))
# setup automatic mixed-precision (AMP) loss scaling and op casting
amp_autocast = suppress
if use_amp == 'apex':
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
loss_scaler = ApexScaler()
else:
amp_autocast = torch.cuda.amp.autocast
loss_scaler = NativeScaler()
# resume checkpoint
resume_epoch = None
resume_path = os.path.join(args.resume, 'last.pth.tar')
if args.resume:
checkpoint = torch.load(os.path.join(args.resume, 'model_best.pth.tar'), map_location='cpu')
max_accuracy = checkpoint['metric']
best_epoch = checkpoint['epoch']
resume_epoch = resume_checkpoint(
model, resume_path,
optimizer=optimizer,
loss_scaler=loss_scaler,
log_info=args.local_rank == 0)
else:
max_accuracy = 0.0
best_epoch = 0
# exponential moving average of model weights
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEmaV2(
model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
if args.resume:
load_checkpoint(model_ema.module, resume_path, use_ema=True)
else:
model_ema = None
# distributed training
if args.distributed:
if use_amp == 'apex':
model = ApexDDP(model, delay_allreduce=True)
else:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device])
# setup learning rate schedule and starting epoch
lr_scheduler, num_epochs = create_scheduler(args, optimizer)
start_epoch = 0
if args.start_epoch is not None:
# a specified start_epoch will always override the resume epoch
start_epoch = args.start_epoch
elif resume_epoch is not None:
start_epoch = resume_epoch
if lr_scheduler is not None and start_epoch > 0:
lr_scheduler.step(start_epoch)
# Dataset
dataset_train = ImageDataset(args.data_path, img_size=args.input_size, mask_path=args.mask_path, patch_size=args.patch_size,
df_path=csv_path, mil=args.mil, sp='train')
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_train = udata.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
data_loader_train = torch.utils.data.DataLoader(dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False)
criterion = CERCELoss(img_cls=args.num_classes_img, tk_cls=args.num_classes_tk).to(device=device)
CEcriterion = torch.nn.CrossEntropyLoss().to(device=device)
if args.eval:
eval_path = os.path.join(output_path, 'model_best.pth.tar')
_ = resume_checkpoint(
model, eval_path,
log_info=args.local_rank == 0)
feat_path = os.path.join(args.feat_path, str(fold))
if args.knn_eval:
eval_stats = evalknn(model, csv_path, device, 0, args, _logger, amp_autocast=amp_autocast)
auc = eval_stats["acc1"]
else:
auc = 0
val_auc.append(auc)
if feat_path:
Path(feat_path).mkdir(parents=True, exist_ok=True)
extract_features(model, csv_path, device, args, feat_path, _logger, amp_autocast=amp_autocast)
if args.local_rank == 0:
_logger.info(f"AUC of the network on the fold {fold} test dataset: {auc:.1f}% ")
continue
output_dir = None
saver = None
best_metric = None
if args.rank == 0:
output_dir = Path(output_path)
saver = CheckpointSaver(
model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
checkpoint_dir=output_dir, recovery_dir=output_dir, max_history=args.checkpoint_hist)
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
f.write(args_text)
start_time = time.time()
# early_stop seetings
early_stop_counter = start_epoch - best_epoch
patience = 40
early_stop = False
for epoch in range(start_epoch, args.epochs):
if args.distributed and hasattr(data_loader_train.sampler, 'set_epoch'):
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(args, model, criterion, data_loader_train, saver, lr_scheduler,
optimizer, device, epoch, loss_scaler, _logger, model_ema, mask=args.mask, amp_autocast=amp_autocast)
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
if args.knn_eval:
eval_stats = evalknn(model, csv_path, device, epoch, args, _logger, amp_autocast=amp_autocast)
else:
eval_stats = validate(model, csv_path, device, CEcriterion, args, _logger, amp_autocast=amp_autocast)
max_accuracy = max(max_accuracy, eval_stats["acc1"])
_logger.info(f"AUC in epoch {epoch} on the validation dataset: {eval_stats['acc1']:.1f}%, "
f"and the best AUC is {max_accuracy:.1f}%")
lr_scheduler.step(epoch + 1)
if output_dir is not None:
update_summary(
epoch, train_stats, eval_stats, os.path.join(output_dir, 'summary.csv'),
write_header=best_metric is None, log_wandb=args.log_wandb and has_wandb)
if saver is not None:
# save proper checkpoint with eval metric
save_metric = eval_stats["acc1"]
best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)
if not max_accuracy == eval_stats["acc1"]:
early_stop_counter += 1
if early_stop_counter > patience:
early_stop = True
else:
early_stop_counter = 0
if early_stop:
val_auc.append(max_accuracy)
break
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
del model
torch.cuda.empty_cache()
if args.local_rank == 0:
_logger.info('Fold {} done, Training time {}'.format(fold+1, total_time_str))
val_mean, val_std = np.mean(val_auc), np.std(val_auc)
if args.local_rank == 0:
_logger.info(f"validation mean(std): {val_mean:.2f} +/- {val_std:.2f}")
if __name__ == '__main__':
main_folds()