-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_stg2.py
65 lines (51 loc) · 2.17 KB
/
engine_stg2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
from sklearn.metrics import roc_auc_score, confusion_matrix
from collections import OrderedDict
import torch
import torch.nn.functional as F
from timm.utils import AverageMeter
def train_slides(model, device, train_loader, optimizer, epoch, criterion, _logger):
model.train()
losses_m = AverageMeter()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
logits = model(data)
loss = criterion(logits, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 100 == 0:
_logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
losses_m.update(loss.item(), data.size(0))
return OrderedDict([('loss', losses_m.avg)])
def eval_slides(model, device, test_loader, criterion, _logger):
model.eval()
test_loss = 0
correct = 0
total = 0
label = []
p = []
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
logits = model(data)
test_loss += criterion(logits, target).item() # sum up batch loss
_, predicted = torch.max(logits, 1)
logits = F.softmax(logits, dim=1)
total += target.size(0)
correct += (predicted == target).sum().item()
label.extend(target.cpu().numpy())
p.extend(logits.cpu().numpy())
acc = 100. * correct / total
if len(np.unique(label)) > 2:
auc = roc_auc_score(label, p, average='macro', multi_class='ovr')
else:
auc = roc_auc_score(label, p[:, 1])
test_loss /= total
_logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.3f}%), AUC: {:.3f}%\n'.format(
test_loss, correct, total, acc, auc))
cm = confusion_matrix(label, np.round(p))
metrics = OrderedDict([('acc', acc), ('auc', auc), ('cm', cm), ('predict', p), ('label', label)])
return metrics