diff --git a/blueprint/src/chapter/HaarCharacterProject.tex b/blueprint/src/chapter/HaarCharacterProject.tex index 0b0be385..43742e6d 100644 --- a/blueprint/src/chapter/HaarCharacterProject.tex +++ b/blueprint/src/chapter/HaarCharacterProject.tex @@ -159,7 +159,7 @@ \section{Left and right Haar characters} \begin{lemma} \label{left_det_eq_right_det} - \lean{left_det_eq_right_det} + %\lean{left_det_eq_right_det} If $u\in B^\times$, if $\ell_u:B\to B$ sends $x$ to $ux$ and if $r_u:B\to B$ sends $x$ to $xu$ then $\det(\ell_u)=\det(r_u)$ as $k$-linear endomorphisms of $B$. \end{lemma} @@ -173,7 +173,7 @@ \section{Left and right Haar characters} \begin{corollary} \label{distribHaarChar_eq_addHaarScalarFactor_right_of_isCentralSimple} - \lean{distribHaarChar_eq_addHaarScalarFactor_right_of_isCentralSimple} + %\lean{distribHaarChar_eq_addHaarScalarFactor_right_of_isCentralSimple} If $B$ is a central simple algebra over a locally compact field $F$, and if $u\in B^\times$, then $\delta_B(u):=d_B(\ell_u)$ is equal to $d_B(r_u)$. \end{corollary}