-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathconvert_mpii_dataset.py
100 lines (86 loc) · 3.48 KB
/
convert_mpii_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from scipy.io import loadmat
import argparse
import json
import numpy as np
def main():
parser = argparse.ArgumentParser()
parser.add_argument('matfile')
parser.add_argument('output')
args = parser.parse_args()
mat = loadmat(args.matfile)
annotations = []
joint_map = {
0: "r_ankle",
1: "r_knee",
2: "r_hip",
3: "l_hip",
4: "l_knee",
5: "l_ankle",
6: "pelvis",
7: "thorax",
8: "upper_neck",
9: "head_top",
10: "r_wrist",
11: "r_elbow",
12: "r_shoulder",
13: "l_shoulder",
14: "l_elbow",
15: "l_wrist"
}
for i, (anno, train_flag) in enumerate(
zip(mat['RELEASE']['annolist'][0, 0][0],
mat['RELEASE']['img_train'][0, 0][0])):
img_fn = anno['image']['name'][0, 0][0]
train_flag = int(train_flag)
head_rect = []
if 'x1' in str(anno['annorect'].dtype):
head_rect = zip(
[x1[0, 0] for x1 in anno['annorect']['x1'][0]],
[y1[0, 0] for y1 in anno['annorect']['y1'][0]],
[x2[0, 0] for x2 in anno['annorect']['x2'][0]],
[y2[0, 0] for y2 in anno['annorect']['y2'][0]])
if 'annopoints' in str(anno['annorect'].dtype):
annopoints = anno['annorect']['annopoints'][0]
head_x1s = anno['annorect']['x1'][0]
head_y1s = anno['annorect']['y1'][0]
head_x2s = anno['annorect']['x2'][0]
head_y2s = anno['annorect']['y2'][0]
for annopoint, head_x1, head_y1, head_x2, head_y2 in zip(
annopoints, head_x1s, head_y1s, head_x2s, head_y2s):
if len(annopoint) == 0:
continue
else:
head_rect = [float(head_x1[0, 0]),
float(head_y1[0, 0]),
float(head_x2[0, 0]),
float(head_y2[0, 0])]
# joint coordinates
annopoint = annopoint['point'][0, 0]
j_id = [str(j_i[0, 0]) for j_i in annopoint['id'][0]]
x = [x[0, 0] for x in annopoint['x'][0]]
y = [y[0, 0] for y in annopoint['y'][0]]
joint_pos = {}
for _j_id, (_x, _y) in zip(j_id, zip(x, y)):
#joint_pos[str(_j_id)] = [float(_x), float(_y)]
joint_pos[joint_map[int(_j_id)]] = [float(_x), float(_y)]
# visiblity list
if 'is_visible' in str(annopoint.dtype):
vis = [v[0] if v else [0]
for v in annopoint['is_visible'][0]]
# vis = dict([(k, int(v[0])) if len(v) > 0 else v
vis = dict([(joint_map[int(k)], int(v[0])) if len(v) > 0 else v
for k, v in zip(j_id, vis)])
else:
vis = None
if len(joint_pos) == 16:
data = {
'filename': img_fn,
'train': train_flag,
'head_rect': head_rect,
'is_visible': vis,
'joint_pos': joint_pos
}
annotations.append(data)
json.dump(annotations, open(args.output, 'w'))
if __name__ == '__main__':
main()