-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathcoco_dataset.py
195 lines (175 loc) · 6 KB
/
coco_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import json
from logging import getLogger
logger = getLogger('__main__')
from dataset import KeypointDataset2D
from utils import pairwise
DEFAULT_KEYPOINT_NAMES = [
'nose',
'left_eye',
'right_eye',
'left_ear',
'right_ear',
'left_shoulder',
'right_shoulder',
'left_elbow',
'right_elbow',
'left_wrist',
'right_wrist',
'left_hip',
'right_hip',
'left_knee',
'right_knee',
'left_ankle',
'right_ankle'
]
FLIP_CONVERTER = {
'nose': 'nose',
'neck': 'neck',
'left_eye': 'right_eye',
'right_eye': 'left_eye',
'left_ear': 'right_ear',
'right_ear': 'left_ear',
'left_shoulder': 'right_shoulder',
'right_shoulder': 'left_shoulder',
'left_elbow': 'right_elbow',
'right_elbow': 'left_elbow',
'left_wrist': 'right_wrist',
'right_wrist': 'left_wrist',
'left_hip': 'right_hip',
'right_hip': 'left_hip',
'left_knee': 'right_knee',
'right_knee': 'left_knee',
'left_ankle': 'right_ankle',
'right_ankle': 'left_ankle',
}
# update keypoints
KEYPOINT_NAMES = ['neck'] + DEFAULT_KEYPOINT_NAMES
FLIP_INDICES = [KEYPOINT_NAMES.index(FLIP_CONVERTER[k]) for k in KEYPOINT_NAMES]
# update keypoints
KEYPOINT_NAMES = ['instance'] + KEYPOINT_NAMES
COLOR_MAP = {
'instance': (225, 225, 225),
'nose': (255, 0, 0),
'neck': (255, 85, 0),
'right_shoulder': (255, 170, 0),
'right_elbow': (255, 255, 0),
'right_wrist': (170, 255, 0),
'left_shoulder': (85, 255, 0),
'left_elbow': (0, 127, 0),
'left_wrist': (0, 255, 85),
'right_hip': (0, 170, 170),
'right_knee': (0, 255, 255),
'right_ankle': (0, 170, 255),
'left_hip': (0, 85, 255),
'left_knee': (0, 0, 255),
'left_ankle': (85, 0, 255),
'right_eye': (170, 0, 255),
'left_eye': (255, 0, 255),
'right_ear': (255, 0, 170),
'left_ear': (255, 0, 85),
}
EDGES_BY_NAME = [
['instance', 'neck'],
['neck', 'nose'],
['nose', 'left_eye'],
['left_eye', 'left_ear'],
['nose', 'right_eye'],
['right_eye', 'right_ear'],
['neck', 'left_shoulder'],
['left_shoulder', 'left_elbow'],
['left_elbow', 'left_wrist'],
['neck', 'right_shoulder'],
['right_shoulder', 'right_elbow'],
['right_elbow', 'right_wrist'],
['neck', 'left_hip'],
['left_hip', 'left_knee'],
['left_knee', 'left_ankle'],
['neck', 'right_hip'],
['right_hip', 'right_knee'],
['right_knee', 'right_ankle'],
]
EDGES = [[KEYPOINT_NAMES.index(s), KEYPOINT_NAMES.index(d)] for s, d in EDGES_BY_NAME]
TRACK_ORDER_0 = ['instance', 'neck', 'nose', 'left_eye', 'left_ear']
TRACK_ORDER_1 = ['instance', 'neck', 'nose', 'right_eye', 'right_ear']
TRACK_ORDER_2 = ['instance', 'neck', 'left_shoulder', 'left_elbow', 'left_wrist']
TRACK_ORDER_3 = ['instance', 'neck', 'right_shoulder', 'right_elbow', 'right_wrist']
TRACK_ORDER_4 = ['instance', 'neck', 'left_hip', 'left_knee', 'left_ankle']
TRACK_ORDER_5 = ['instance', 'neck', 'right_hip', 'right_knee', 'right_ankle']
TRACK_ORDERS = [TRACK_ORDER_0, TRACK_ORDER_1, TRACK_ORDER_2, TRACK_ORDER_3, TRACK_ORDER_4, TRACK_ORDER_5]
DIRECTED_GRAPHS = []
for keypoints in TRACK_ORDERS:
es = [EDGES_BY_NAME.index([a, b]) for a, b in pairwise(keypoints)]
ts = [KEYPOINT_NAMES.index(b) for a, b in pairwise(keypoints)]
DIRECTED_GRAPHS.append([es, ts])
def get_coco_dataset(insize, image_root, annotations,
min_num_keypoints=1, use_cache=False, do_augmentation=False):
cat_id = 1
dataset_type = 'coco'
dataset = json.load(open(annotations, 'r'))
cat = dataset['categories'][cat_id - 1]
assert cat['keypoints'] == DEFAULT_KEYPOINT_NAMES
# image_id => filename, keypoints, bbox, is_visible, is_labeled
images = {}
for image in dataset['images']:
images[image['id']] = image['file_name'], [], [], [], []
for anno in dataset['annotations']:
if anno['num_keypoints'] < min_num_keypoints:
continue
if anno['category_id'] != cat_id:
continue
if anno['iscrowd'] != 0:
continue
image_id = anno['image_id']
d = np.array(anno['keypoints'], dtype='float32').reshape(-1, 3)
# define neck from left_shoulder and right_shoulder
left_shoulder_idx = DEFAULT_KEYPOINT_NAMES.index('left_shoulder')
right_shoulder_idx = DEFAULT_KEYPOINT_NAMES.index('right_shoulder')
left_shoulder, left_v = d[left_shoulder_idx][:2], d[left_shoulder_idx][2]
right_shoulder, right_v = d[right_shoulder_idx][:2], d[right_shoulder_idx][2]
if left_v >= 1 and right_v >= 1:
neck = (left_shoulder + right_shoulder) / 2.
labeled = 1
d = np.vstack([np.array([*neck, labeled]), d])
else:
labeled = 0
# insert dummy data correspond to `neck`
d = np.vstack([np.array([0.0, 0.0, labeled]), d])
keypoints = d[:, [1, 0]] # array of y,x
bbox = anno['bbox']
is_visible = d[:, 2] == 2
is_labeled = d[:, 2] >= 1
entry = images[image_id]
entry[1].append(np.asarray(keypoints))
entry[2].append(np.asarray(bbox))
entry[3].append(np.asarray(is_visible).astype(np.bool))
entry[4].append(np.asarray(is_labeled).astype(np.bool))
# filter-out non annotated images
image_paths = []
keypoints = []
bbox = []
is_visible = []
is_labeled = []
for filename, k, b, v, l in images.values():
if len(k) == 0:
continue
image_paths.append(filename)
bbox.append(b)
keypoints.append(k)
is_visible.append(v)
is_labeled.append(l)
return KeypointDataset2D(
dataset_type=dataset_type,
insize=insize,
keypoint_names=KEYPOINT_NAMES,
edges=np.array(EDGES),
flip_indices=FLIP_INDICES,
keypoints=keypoints,
bbox=bbox,
is_visible=is_visible,
is_labeled=is_labeled,
image_paths=image_paths,
image_root=image_root,
use_cache=use_cache,
do_augmentation=do_augmentation
)