-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
22 lines (18 loc) · 983 Bytes
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import numpy as np
from src.ensemble_log_regression import Config, EnsembleClassifiers, LogisticClassifier
from src.utils import dataloader, standardize, create_csv_submission, build_polynomial
def main():
x, y = dataloader(mode='train', reduced=False)
x_test = dataloader(mode='test', reduced=False)
'''For the dataloader there are two modes train and test, depending on the dataset loaded.'''
x = standardize(x)
x_test = standardize(x_test)
config = Config(batch_size=120, num_epochs=400, learning_rate=5 * 10 ** -4,
lambda_=2.15443469003e-05, mode='train')
log_class = LogisticClassifier(config, (build_polynomial(x), y))
log_class.train(show_every=10)
predictions_test = log_class.predict_submission(log_class(build_polynomial(x_test)))
create_csv_submission(np.arange(350000, 350000 + x_test.shape[0]), predictions_test,
'dataset/submission_0x.csv')
if __name__ == '__main__':
main()