-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathllm_general_multi_process_gpu.py
236 lines (200 loc) · 10.9 KB
/
llm_general_multi_process_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import json
import os
import multiprocessing
from tqdm import tqdm
from utility.llm_general_summarizer import * # Assuming all summarizer-related functions are in summarizer.py
import argparse
def ensure_directory(directory):
"""Ensure that the specified directory exists."""
if not os.path.exists(directory):
os.makedirs(directory)
def update_json_file(artifacts, file_path):
"""Helper function to update JSON file after processing each artifact."""
with open(file_path, 'w') as file:
json.dump(artifacts, file, indent=4)
def debug_log(message):
"""Helper function to print debug logs if the debug flag is True."""
if args.debug:
print(message)
def double_summarize_artifact(model_id,
artifact_json,
artifact_text_field,
first_summmary_field,
second_summary_field,
sys_summarize_with_context,
sys_command_extract_with_context,
generation_args,
context_field=None):
"""Process a single artifact."""
if second_summary_field in artifact_json.keys():
return artifact_json
# Initialize model and tokenizer
m, t = model_tokenizer(model_id) # Initialize model and tokenizer
context = "" if context_field is None else artifact_json[context_field]
print("Got model and context")
artifact_json[first_summmary_field] = get_first_summary(m, t, generation_args,
artifact_json,
artifact_text_field,
sys_summarize_with_context,
context) # Get mini-summary
print("1st summary")
artifact_json[second_summary_field] = get_summary_over_summary(m, t, generation_args,
artifact_json,
first_summmary_field,
sys_command_extract_with_context,
context) # Get summary-over-summary
print("2nd summary")
return artifact_json
def worker(worker_args):
"""Worker function for multiprocessing."""
artifacts_subset, partition_id, gpu_id, output_dir, model_id, id_field, artifact_text_field, first_summary_field, summary_over_summary_field, sys_summarize_with_context, sys_command_extract_with_context, generation_args = worker_args
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
processed_artifacts = []
partition_file = os.path.join(output_dir, f'partition_{partition_id}.json')
# Load existing processed artifacts if the partition file exists
if os.path.exists(partition_file):
with open(partition_file, 'r') as file:
processed_artifacts = json.load(file)
# Create a set of processed artifact URLs for quick lookup
processed_urls = set(artifact[id_field] for artifact in processed_artifacts)
# Filter out already processed artifacts from artifacts_subset
artifacts_subset = [artifact for artifact in artifacts_subset if artifact[id_field] not in processed_urls]
for i, artifact in enumerate(artifacts_subset):
try:
processed_artifact = double_summarize_artifact(model_id,
artifact,
artifact_text_field,
first_summary_field,
summary_over_summary_field,
sys_summarize_with_context,
sys_command_extract_with_context,
generation_args,
None) # FIXME add context field
processed_artifacts.append(processed_artifact)
except Exception as e:
print(f"Error processing artifact {artifact[id_field]} in partition {partition_id} on GPU {gpu_id}: {str(e)}")
processed_artifacts.append(artifact) # Append original artifact if processing fails
# Save progress after each artifact
update_json_file(processed_artifacts, partition_file)
# Log progress
print(f"GPU {gpu_id}, Partition {partition_id}: Processed artifact {i+1}/{len(artifacts_subset)}")
return processed_artifacts, partition_id
def partition_artifacts(artifacts, num_partitions):
"""Partition the artifacts list into num_partitions sublists."""
partition_size = len(artifacts) // num_partitions
partitions = [artifacts[i:i + partition_size] for i in range(0, len(artifacts), partition_size)]
# Distribute any remaining artifacts
for i in range(len(artifacts) % num_partitions):
partitions[i].append(artifacts[partition_size * num_partitions + i])
return partitions
def main(args):
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(map(str, args.gpu_devices))
gpu_list = args.gpu_devices
num_gpus = len(gpu_list)
ensure_directory(args.output_dir)
debug_log("\n===================================")
debug_log("Getting data")
debug_log("===================================\n")
# Set default generation_args
generation_args = {
"use_cache": True,
"max_new_tokens": 1000
}
# Override defaults if the generation_args_file is provided
if args.generation_args_file:
with open(args.generation_args_file, 'r') as file:
generation_args = json.load(file)
with open("default_llm_commands.json", 'r') as file:
default_sys_commands = json.load(file)
if args.sys_commands_file:
with open(args.sys_commands_file, 'r') as file:
sys_commands = json.load(file)
if "sys_command_extract_with_context" in sys_commands.keys():
sys_command_extract_with_context = sys_commands['sys_command_extract_with_context']
else:
sys_command_extract_with_context = default_sys_commands['sys_command_extract_with_context']
if "sys_summarize_with_context" in sys_commands.keys():
sys_summarize_with_context = sys_commands['sys_summarize_with_context']
else:
sys_summarize_with_context = default_sys_commands['sys_summarize_with_context']
with open(args.input_json, 'r') as file:
artifacts = json.load(file)
total_processes = num_gpus * args.processes_per_gpu
artifact_partitions = partition_artifacts(artifacts, total_processes)
# Create a multiprocessing Pool with total_processes workers
with multiprocessing.Pool(processes=total_processes) as pool:
# Create the main progress bar
with tqdm(total=len(artifacts), desc="Total Progress") as pbar:
worker_args = [
(partition, i, gpu_list[(i // args.processes_per_gpu) % num_gpus],
args.output_dir,
args.model_id,
args.id_field,
args.artifact_text_field,
args.first_summary_field,
args.summary_over_summary_field,
sys_summarize_with_context,
sys_command_extract_with_context,
generation_args) # FIXME use JSON to set some of these variables
for i, partition in enumerate(artifact_partitions)
]
for processed_partition, partition_id in pool.imap_unordered(worker, worker_args):
# Update the main artifact list with processed artifacts
for processed_artifact in processed_partition:
for i, artifact in enumerate(artifacts):
if artifact[args.id_field] == processed_artifact[args.id_field]:
artifacts[i] = processed_artifact
break
# Update progress bar
pbar.update(1)
# Save the complete updated list after each partition
update_json_file(artifacts, args.input_json)
print(f"Completed processing partition {partition_id} and saved in original file.")
print("\n===================================")
print(f"All artifacts processed. Check your original file {args.input_json}")
print("===================================\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Process artifacts using GPU acceleration.",
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument("--input_json",
required=True,
help="Path to the input JSON file containing artifacts to process.")
parser.add_argument("--output_dir",
required=True,
help="Directory to store partition JSON files and processed results.")
parser.add_argument("--debug",
action="store_true",
help="Enable debug output for verbose logging.")
parser.add_argument("--gpu_devices",
type=int,
nargs="+",
required=True,
help="List of GPU device indices to use (e.g., --gpu_devices 0 1 2).")
parser.add_argument("--processes_per_gpu",
type=int,
required=True,
help="Number of parallel processes to run per GPU.")
parser.add_argument("--model_id",
required=True,
help="Model to be used")
parser.add_argument("--first_summary_field",
required=True,
help="First pass summary")
parser.add_argument("--summary_over_summary_field",
required=True,
help="Second pass summary")
parser.add_argument("--artifact_text_field",
required=True,
help="Field that holds the original text")
parser.add_argument("--sys_commands_file",
help="Path to the JSON file containing system commands for llm model (optional).")
parser.add_argument("--generation_args_file",
help="Path to the JSON file containing generation arguments (optional).")
parser.add_argument("--id_field",
required=True,
help="Field that ids artifact")
args = parser.parse_args()
multiprocessing.set_start_method('spawn')
main(args)