-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorder_of_code.R
185 lines (148 loc) · 6.42 KB
/
order_of_code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#######################################################
#
# Depending on the hardware, the subsequent code
# can run for several hours or even a few days.
#
#######################################################
# Prerequisites
# Install "Just Another Gibbs Sampler" (JAGS) if you want to run the Bayesian analyses anew.
# Version 4.3 - as used here - can be downloaded in pre-compiled form for a number of OS here:
# https://sourceforge.net/projects/mcmc-jags/
# The manual can be found here: https://people.stat.sc.edu/hansont/stat740/jags_user_manual.pdf
# Install required packages
require(pacman) || install.packages("pacman")
pacman::p_load(coda, cowplot, demogR, dplyr, flexsurv, ggplot2, ggrepel, grid,
gridExtra, HMDHFDplus, kableExtra, Metrics, mortAAR, osmdata,
psych, readxl, reshape2, rjags, runjags, sf, tidyr, ggspatial)
options(scipen = 999)
options(dplyr.summarise.inform = FALSE)
source("./functions/gomp_MLE.R")
source("./functions/gomp_MLE_adapted.R")
source("./functions/gomp_MLE_interval.R")
source("./functions/gomp_anthr_age.R")
source("./functions/gomp_anthr_age_r.R")
source("./functions/gomp_known_age.R")
source("./functions/gomp_known_age_r.R")
source("./functions/helper_functions.R")
source("./functions/lt_MC.R")
source("./functions/lt_MC_Gomp.R")
RNGkind("L'Ecuyer-CMRG") # conservative random number generator to avoid periodicity
# run extensive code anew. Set TRUE to run extensive code (6 h +)
runCodeNew <- FALSE
#runCodeNew <- TRUE
# ask for credentials of the Human Mortality Database if the code runs anew
if (runCodeNew){
HMD_username <- readline(prompt = "Enter username: ")
HMD_password <- readline(prompt="Enter password: ")
credentials <- c(HMD_username, HMD_password)
}
# Specify filename prefix for saved files and create a folder if needed:
saveFileDir = "preprocessed_files"
if (saveFileDir %in% list.files(getwd())) {
# Dir exists
}else{
dir.create(file.path(".", saveFileDir), showWarnings = FALSE )
}
#############
# Introduction
# Figure 1: Gompertz.
source("./chapter_01_introduction/gompertz_distribution.R")
gridExtra::grid.arrange(gompertz_plot)
#############
# Materials and methods
# figure 3: Hazard curve (mx) to show turning point
source("./chapter_02_materials_and_methods/hazard_curve.R")
gridExtra::grid.arrange(HMD_UK_hazard_plot)
#############
# Data
# figure 4: Map of London with sites
source("./chapter_03_data/London_places.R")
suppressWarnings(print(London_map))
# figure 5 London population
source("./chapter_03_data/London_population.R")
grid::grid.newpage()
grid::grid.draw(rbind(london_pop1, london_pop2))
# footnote 6: Re-calculation of rates for Razzell/Spence 2007
# Calculated in ./chapter_03_data/London_population.R
razz_df
############
# Results
# Simulations for evaluation of algorithms for retrieving Gompertz parameters
# Subsequent Bayes calculations can take a while
source("./chapter_supplement/simulations_run.R", echo=TRUE,
max.deparse.length=10000, continue.echo = getOption("continue"))
# figure 6: Plot of results of methods with known age-at-death
do.call(gridExtra::grid.arrange, c(plot_list_shapes, ncol = 3))
# figure 7: Plot of difference between observed and estimated value
do.call(gridExtra::grid.arrange, c(plot_list_diff, ncol = 3))
# table 3: RMSEs for known ages
rmse_result[order(rmse_result$RMSE) ,]
# figure 8: Plot of results of algorithms with estimated age-at-death
do.call(gridExtra::grid.arrange, plot_list_estim_shapes)
# table 4: RMSEs for estimated ages
rmse_estim_result[order(rmse_estim_result$RMSE) ,]
# figure 9: Simulation of population increase
source("./chapter_04_results/simulations_pop_incr_run.R", echo=TRUE,
max.deparse.length=10000, continue.echo = getOption("continue"))
do.call(gridExtra::grid.arrange, c(lt_sim_plot_list, ncol = 4) )
# Written sources, pre-processed
# Subsequent Bayes calculations can take a while
warning("Subsequent sourcing of Bayes calculations. Progressbars will show up.")
source("./chapter_04_results/historical_lifetables.R")
london_1728_1840_ranges
london_1728_1840_ranges_r
London_1841_ranges
eng_mort_ranges
HMD_UK_ranges
peers_ranges
monks_ranges
# Ranges for St. Marylebone with correction for population increase
source("./lifetables_processing/Marylebone.R")
Marylebone_ranges
# Extended results for written sources, pre-processed
source("./chapter_04_results/historical_lifetables.R")
peers_result
london_1728_1840_result
london_1728_1840_result_r
London_1841_result
eng_mort_result
HMD_UK_result
monks_result
# Extended results for London cemeteries, pre-processed
# Subsequent Bayes calculations can take a while
# Subsequent code will ask for the file ST.BRIDE'S_CRYPT_Data
# from the Museum of London.
# file.chose() doesn't open to the foreground!
source("./lifetables_processing/stbrides_crypt.R", echo=TRUE,
max.deparse.length=10000, continue.echo = getOption("continue"))
source("./chapter_04_results/Wellcome_DB.R", echo=TRUE,
max.deparse.length=10000, continue.echo = getOption("continue"))
wellcome_result
wellcome_result_r
# figure 10: Modal ages from historical and osteological data
source("./chapter_04_results/english_wellcome.R", echo=TRUE,
max.deparse.length=10000, continue.echo = getOption("continue"))
# table 5: Overview of modelled osteological data from London cemeteries
wellcome_overview_all
write.table(wellcome_overview_all, file = "./documented/table02_osteological_estimates.txt", sep="\t", quote = FALSE)
# figure 11: St. Bride's Crypt
# The following calculations have already been sourced before.
# Only run again if necessary or continue with 'stbrides_crypt_plot'.
source("./lifetables_processing/stbrides_crypt.R", echo=TRUE,
max.deparse.length=10000, continue.echo = getOption("continue"))
source("./chapter_04_results/Wellcome_DB.R", echo=TRUE,
max.deparse.length=10000, continue.echo = getOption("continue"))
# St. Bride's crypt data, comparison of known age and osteological estimates
stbrides_crypt_plot
############
# Supplements
# Minimum Gompertz beta in Coale/Demeny-Tables
source("./chapter_supplement/coale_demeny_life_tables_gompertz.R")
min(gompertz_df$Gompertz_shape)
# Figure S.F1.: Plot for Bayesian model of difference
do.call(gridExtra::grid.arrange, c(plot_list_bayes_diff, ncol = 2) )
# Table S.T1: Show that means are stable in Bayesian modelling
# can take a few minutes
source("./chapter_supplement/bayes_complete.R",
max.deparse.length=10000, continue.echo = getOption("continue"))
bayes_complete_table