-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwordcloud_1988.py
executable file
·101 lines (84 loc) · 3.25 KB
/
wordcloud_1988.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# - * - coding: utf - 8 -*-
#
# 作者:田丰(FontTian)
# 创建时间:'2017/5/23'
# 邮箱:[email protected]
# CSDN:http://blog.csdn.net/fontthrone
from os import path
from scipy.misc import imread
import matplotlib.pyplot as plt
import jieba
# jieba.load_userdict("txt\userdict.txt")
# 添加用户词库为主词典,原词典变为非主词典
from wordcloud import WordCloud, ImageColorGenerator
# 获取当前文件路径
# __file__ 为当前文件, 在ide中运行此行会报错,可改为
# d = path.dirname('.')
d = path.dirname(__file__)
stopwords = {}
isCN = 1 #默认启用中文分词
back_coloring_path = "img/lz1.jpg" # 设置背景图片路径
text_path = 'txt/comment.txt' #设置要分析的文本路径
#font_path = 'D:\Fonts\simkai.ttf' # 为matplotlib设置中文字体路径没
stopwords_path = 'stopwords\stopwords1893.txt' # 停用词词表
imgname1 = "WordCloudDefautColors.png" # 保存的图片名字1(只按照背景图片形状)
imgname2 = "WordCloudColorsByImg.png"# 保存的图片名字2(颜色按照背景图片颜色布局生成)
my_words_list = ['路明非'] # 在结巴的词库中添加新词
back_coloring = imread(path.join(d, back_coloring_path))# 设置背景图片
# 设置词云属性
wc = WordCloud(
#font_path=font_path, # 设置字体
background_color="white", # 背景颜色
max_words=2000, # 词云显示的最大词数
mask=back_coloring, # 设置背景图片
max_font_size=100, # 字体最大值
random_state=42,
width=1000, height=860, margin=2,# 设置图片默认的大小,但是如果使用背景图片的话,那么保存的图片大小将会按照其大小保存,margin为词语边缘距离
)
# 添加自己的词库分词
def add_word(list):
for items in list:
jieba.add_word(items)
add_word(my_words_list)
text = open(path.join(d, text_path)).read()
def jiebaclearText(text):
mywordlist = []
seg_list = jieba.cut(text, cut_all=False)
liststr="/ ".join(seg_list)
f_stop = open(stopwords_path)
try:
f_stop_text = f_stop.read( )
f_stop_text=unicode(f_stop_text,'utf-8')
finally:
f_stop.close( )
f_stop_seg_list=f_stop_text.split('\n')
for myword in liststr.split('/'):
if not(myword.strip() in f_stop_seg_list) and len(myword.strip())>1:
mywordlist.append(myword)
return ''.join(mywordlist)
if isCN:
text = jiebaclearText(text)
# 生成词云, 可以用generate输入全部文本(wordcloud对中文分词支持不好,建议启用中文分词),也可以我们计算好词频后使用generate_from_frequencies函数
wc.generate(text)
# wc.generate_from_frequencies(txt_freq)
# txt_freq例子为[('词a', 100),('词b', 90),('词c', 80)]
# 从背景图片生成颜色值
image_colors = ImageColorGenerator(back_coloring)
plt.figure()
# 以下代码显示图片
plt.imshow(wc)
plt.axis("off")
plt.show()
# 绘制词云
# 保存图片
wc.to_file(path.join(d, imgname1))
image_colors = ImageColorGenerator(back_coloring)
plt.imshow(wc.recolor(color_func=image_colors))
plt.axis("off")
# 绘制背景图片为颜色的图片
plt.figure()
plt.imshow(back_coloring, cmap=plt.cm.gray)
plt.axis("off")
plt.show()
# 保存图片
wc.to_file(path.join(d, imgname2))