-
Notifications
You must be signed in to change notification settings - Fork 216
/
Copy pathhydra_train_net.py
239 lines (192 loc) · 8.57 KB
/
hydra_train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#!/usr/bin/env python
"""
A script to launch training, it surpports:
* one-line command to launch training locally or on a slurm cluster
* automatic experiment name generation according to hyperparameter overrides
* automatic requeueing & resume from latest checkpoint when a job reaches maximum running time or is preempted
Example usage:
STER 1: modify slurm config
```
$ cp configs/hydra/slurm/research.yaml configs/hydra/slurm/${CLUSTER_ID}.yaml && \
vim configs/hydra/slurm/${CLUSTER_ID}.yaml
```
STEP 2: launch training
```
$ python tools/hydra_train_net.py \
num_machines=2 num_gpus=8 auto_output_dir=true \
config_file=projects/detr/configs/detr_r50_300ep.py \
+model.num_queries=50 \
+slurm=${CLUSTER_ID}
```
STEP 3 (optional): check output dir
```
$ tree -L 2 ./outputs/
./outputs/
└── +model.num_queries.50-num_gpus.8-num_machines.2
└── 20230224-09:06:28
```
Contact ZHU Lei ([email protected]) for inquries about this script
"""
import sys
import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
# print(sys.path)
# FIXME: it seems that, even though I put tools/.. in front of PYTHONPATH, the interpreter still finally
# find detectron2/tools/train_net. Two workarounds:
# 1. pip uninstall detrex && pip uninstall detectron2 && pip install detrex && pip install detectron2 (tested)
# 2. PYTHONPATH=${PWD}:${PYTHONPATH} python tools/hydra_train_net.py ... (not tested)
from tools.train_net import main
import hydra
from hydra.utils import get_original_cwd
from omegaconf import OmegaConf, DictConfig
from detectron2.engine import launch
from detectron2.config import LazyConfig
import os.path as osp
import submitit
import uuid
from pathlib import Path
from detrex.utils.dist import slurm_init_distributed_mode
def _find_free_port():
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Binding to port 0 will cause the OS to find an available port for us
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
# NOTE: there is still a chance the port could be taken by other processes.
return port
def get_shared_folder(share_root) -> Path:
if Path(share_root).parent.is_dir():
p = Path(f"{share_root}")
p.mkdir(exist_ok=True)
return p
raise RuntimeError(f"The parent of share_root ({share_root}) must exist!")
def get_init_file(share_root):
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder(share_root)), exist_ok=True)
init_file = get_shared_folder(share_root) / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
def get_dist_url(ddp_comm_mode='tcp', share_root=None):
if ddp_comm_mode == 'file':
assert share_root is not None
return get_init_file(share_root).as_uri()
elif ddp_comm_mode == 'tcp':
return 'env://'
else:
raise ValueError('Unknown DDP communication mode')
class Trainer(object):
def __init__(self, args):
self.args = args
def __call__(self):
self._setup_gpu_args()
if self.args.world_size > 1:
slurm_init_distributed_mode(self.args)
if not self.args.eval_only: # always auto resume if in training
self.args.resume = True
main(self.args)
def checkpoint(self): # being called when met timeout or preemption signal is received
import os
import submitit
self.args.dist_url = get_dist_url(
ddp_comm_mode=self.args.slurm.ddp_comm_mode,
share_root=self.args.slurm.share_root)
self.args.resume = True
print("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
import submitit
job_env = submitit.JobEnvironment()
# https://shomy.top/2022/01/05/torch-ddp-intro/
# self.args.dist_url = f'tcp://{job_env.hostname}:{self.args.slurm.port}'
# self.args.output_dir = self.args.slurm.job_dir
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks
self.args.machine_rank = job_env.node
self.args.slurm.jobid = job_env.job_id # just in case of need, e.g. logging to wandb
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
# @hydra.main(version_base=None, config_path="../configs/hydra", config_name="train_args.yaml")
@hydra.main(config_path="../configs/hydra", config_name="train_args.yaml")
def hydra_app(args:DictConfig):
# NOTE: enable write to unknow field of cfg
# hence it behaves like argparse.NameSpace
# this is required as some args are determined at runtime
# https://stackoverflow.com/a/66296809
OmegaConf.set_struct(args, False)
# TODO: switch to hydra 1.3+, which natrually supports relative path
# the following workaround is for hydra 1.1.2
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
# since hydra 1.1.2 will change PWD to run dir, get current work dir first
args.config_file = osp.join(get_original_cwd(), args.config_file)
# command line args starting with '+' are for overrides, except '+slurm=[cluster_id]'
args.opts = [ x.replace('+', '') for x in hydra_cfg['overrides']['task'] if (x.startswith('+')
and not x.startswith('+slurm'))]
# print(args.opts)
hydra_run_dir = os.path.join(get_original_cwd(), hydra_cfg['run']['dir'])
if args.auto_output_dir:
args.opts.append(f"train.output_dir={hydra_run_dir}")
# print(args.opts)
# test args
# print(OmegaConf.to_yaml(args, resolve=True))
if not hasattr(args, 'slurm'): # run locally
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)
else: # run with slurm
if args.slurm.job_dir is None: # use hydra run_dir as slurm output dir
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
args.slurm.job_dir = hydra_run_dir
if args.slurm.master_port is None: # automatically find free port for ddp communication
args.slurm.master_port = _find_free_port()
executor = submitit.AutoExecutor(folder=args.slurm.job_dir, slurm_max_num_timeout=30)
############## NOTE: this part is highly dependent on slurm version ##############
kwargs = {}
if args.slurm.comment:
kwargs['slurm_comment'] = args.slurm.comment
# NOTE: slurm of different versions may have different flags
# slurm_additional_parameters is flexible to cope with this scenario
slurm_additional_parameters={'ntasks': args.slurm.nodes*args.slurm.ngpus,
'gres': f'gpu:{args.slurm.ngpus}',
'ntasks-per-node': args.slurm.ngpus} # one task per GPU
if args.slurm.exclude_node:
slurm_additional_parameters['exclude'] = args.slurm.exclude_node
if args.slurm.quotatype:
slurm_additional_parameters['quotatype'] = args.slurm.quotatype
##################################################################################
executor.update_parameters(
## original
# mem_gb=40 * num_gpus_per_node,
# gpus_per_node=num_gpus_per_node,
# tasks_per_node=num_gpus_per_node, # one task per GPU
# nodes=nodes,
# timeout_min=timeout_min, # max is 60 * 72
## https://github.com/facebookincubator/submitit/issues/1639
# mem_per_cpu=4000,
# gpus_per_node=num_gpus_per_node,
# cpus_per_task=4,
cpus_per_task=args.slurm.cpus_per_task,
nodes=args.slurm.nodes,
slurm_additional_parameters=slurm_additional_parameters,
timeout_min=args.slurm.timeout * 60, # in minutes
# Below are cluster dependent parameters
slurm_partition=args.slurm.partition,
slurm_signal_delay_s=120,
**kwargs
)
executor.update_parameters(name=args.slurm.job_name)
args.dist_url = get_dist_url(
ddp_comm_mode=args.slurm.ddp_comm_mode,
share_root=args.slurm.share_root)
trainer = Trainer(args)
job = executor.submit(trainer)
print("Submitted job_id:", job.job_id)
if __name__ == '__main__':
hydra_app()