diff --git a/.github/workflows/core.yml b/.github/workflows/core.yml index 1c7213b5..72140e5e 100644 --- a/.github/workflows/core.yml +++ b/.github/workflows/core.yml @@ -44,10 +44,20 @@ defaults: shell: bash -l {0} jobs: + spell-check: + name: Check Spelling + runs-on: ubuntu-latest + steps: + - name: Checkout source + uses: actions/checkout@v3 + - name: Run Spell Checker + uses: crate-ci/typos@master + pytest: # description: Run pytest with dev dependencies name: pytest (py${{ matrix.python-version }}/${{ matrix.os }}) runs-on: ${{ matrix.runner-image }} + needs: [spell-check] strategy: fail-fast: false matrix: diff --git a/idaes_examples/archive/data_reconciliation/boiler_flowsheet_recon_src.ipynb b/idaes_examples/archive/data_reconciliation/boiler_flowsheet_recon_src.ipynb index 15a6b0fc..402842e8 100644 --- a/idaes_examples/archive/data_reconciliation/boiler_flowsheet_recon_src.ipynb +++ b/idaes_examples/archive/data_reconciliation/boiler_flowsheet_recon_src.ipynb @@ -614,7 +614,7 @@ "outputs": [], "source": [ "# Add the model references to the tag metadata based on the strings above.\n", - "da.upadate_metadata_model_references(m, df_meta)" + "da.update_metadata_model_references(m, df_meta)" ] }, { diff --git a/idaes_examples/archive/data_reconciliation/econ_recon_src.ipynb b/idaes_examples/archive/data_reconciliation/econ_recon_src.ipynb index 797b63df..503c399f 100644 --- a/idaes_examples/archive/data_reconciliation/econ_recon_src.ipynb +++ b/idaes_examples/archive/data_reconciliation/econ_recon_src.ipynb @@ -118,7 +118,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "It can be useful to visualize the measurement data and estimated uncertainty. The following creates box and whisker plots for each tag based on the data bins. A large number of plots may be created, so to manage them more easily, they are saved as PDFs and merged into a single multi-page PDF document. The deafault file name for the resulting PDF is \"data_plot_book.pdf.\"" + "It can be useful to visualize the measurement data and estimated uncertainty. The following creates box and whisker plots for each tag based on the data bins. A large number of plots may be created, so to manage them more easily, they are saved as PDFs and merged into a single multi-page PDF document. The default file name for the resulting PDF is \"data_plot_book.pdf.\"" ] }, { @@ -384,7 +384,7 @@ "outputs": [], "source": [ "# Add the model references to the tag metadata based on the strings above.\n", - "da.upadate_metadata_model_references(m, df_meta)" + "da.update_metadata_model_references(m, df_meta)" ] }, { @@ -413,7 +413,7 @@ "from idaes.core.util.tags import ModelTagGroup\n", "\n", "# This function creates a dictionary of streams based of streams based on model arcs. The function\n", - "# also takes an addtional set of stream-like objects for add to the stream dictionary. In this case,\n", + "# also takes an additional set of stream-like objects for add to the stream dictionary. In this case,\n", "# this is a single unit and the flowsheet doesn't contain any arcs, so we add the economized inlet and\n", "# outlet ports to the stream dictionary.\n", "stream_dict = ta.arcs_to_stream_dict(\n", @@ -459,7 +459,7 @@ " except KeyError:\n", " pass\n", "\n", - "# Any addtional tags can be added. This is required for tags that cannot be systematically generated\n", + "# Any additional tags can be added. This is required for tags that cannot be systematically generated\n", "# from the model streams.\n", "recon_tags.add(expr=m.fs.econ.heat_duty[0], name=\"ECON_Q\", format_string=\"{:.3f}\")" ] diff --git a/idaes_examples/archive/matopt/bifunctional_surface_design_src.ipynb b/idaes_examples/archive/matopt/bifunctional_surface_design_src.ipynb index d9a0ce4e..b123df61 100644 --- a/idaes_examples/archive/matopt/bifunctional_surface_design_src.ipynb +++ b/idaes_examples/archive/matopt/bifunctional_surface_design_src.ipynb @@ -43,7 +43,7 @@ "metadata": {}, "source": [ "## Importing Packages\n", - "We start by importing several standard Python modules for convienience. " + "We start by importing several standard Python modules for convenience. " ] }, { @@ -339,7 +339,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Finally, we introduce a single descriptor for the weighted combination of acitivity and stability. \n", + "Finally, we introduce a single descriptor for the weighted combination of activity and stability. \n", "By changing the parameter weighting the catalytic portion of the objective function, we can optimize for a range of designs optimizing stability and activity. " ] }, diff --git a/idaes_examples/archive/matopt/bimetallic_nanocluster_design_src.ipynb b/idaes_examples/archive/matopt/bimetallic_nanocluster_design_src.ipynb index 643ce34c..a1872731 100644 --- a/idaes_examples/archive/matopt/bimetallic_nanocluster_design_src.ipynb +++ b/idaes_examples/archive/matopt/bimetallic_nanocluster_design_src.ipynb @@ -45,7 +45,7 @@ "source": [ "## Importing Packages\n", "\n", - "We start by importing several standard Python modules for convienience." + "We start by importing several standard Python modules for convenience." ] }, { diff --git a/idaes_examples/archive/matopt/monometallic_nanocluster_design_src.ipynb b/idaes_examples/archive/matopt/monometallic_nanocluster_design_src.ipynb index 32b4955b..b4a900c3 100644 --- a/idaes_examples/archive/matopt/monometallic_nanocluster_design_src.ipynb +++ b/idaes_examples/archive/matopt/monometallic_nanocluster_design_src.ipynb @@ -34,10 +34,10 @@ "\n", "In this module, we introduce the **MatOpt** interface for representing material properties and specifying optimization problems. \n", "\n", - "We have designed the interface with severl goals in mind:\n", + "We have designed the interface with several goals in mind:\n", "\n", "1. To **simplify the representation of nanostructured materials,** streamlining the creation of materials optimization problems. \n", - "2. To provide a simple interface so that users **do not need to understand the details of building mathematical optmization models** or the syntax of the Pyomo package. \n", + "2. To provide a simple interface so that users **do not need to understand the details of building mathematical optimization models** or the syntax of the Pyomo package. \n", "3. To **automate many of the common steps of materials optimization,** speeding up the development of new models. \n", "\n", "As an example system, we will consider the minimization of cohesive energy in nanoclusters, recently demonstrated in:\n", @@ -45,7 +45,7 @@ "Isenberg, N. M., et al., \"Identification of Optimally Stable Nanocluster Geometries via Mathematical Optimization and Density Functional Theory,\" *Molecular Systems Design & Engineering* 5 (2020): 232-244. DOI: [10.1039/C9ME00108E](https://pubs.rsc.org/en/content/articlelanding/2020/me/c9me00108e#!divAbstract).\n", "\n", "We seek to identify the geometry that minimizes the cohesive energy of a nanocluster on the face-centered cubic (FCC) lattice. \n", - "As a model for cohesive energy, we use model based on the square-root of coordination number, refered to as the Tomanek model [[1]](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.665).\n", + "As a model for cohesive energy, we use model based on the square-root of coordination number, referred to as the Tomanek model [[1]](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.665).\n", "In the equation below, we define the normalized cohesive energy, as the normalized contribution of the square root of the coordination number. \n", "\n", "$$\\hat{E}^{\\text{surf}} = \\frac{1}{N \\sqrt{12}} \\displaystyle \\sum_i \\sqrt{CN_i} $$\n", @@ -178,7 +178,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The MatOptModel additionally hold lists of ***MaterialDescriptor*** objects that define the relevant material desriptors. \n", + "The MatOptModel additionally hold lists of ***MaterialDescriptor*** objects that define the relevant material descriptors. \n", "By default, several universal site descriptors are pre-defined in the model. \n", "From these, all other material descriptors can be defined.\n", "\n", @@ -353,7 +353,7 @@ " Default: True\n", " tilim (float): Optional, solver time limit (in seconds).\n", " Default: 3600\n", - " trelim (float): Optional, solver tree memeory limit (in MB).\n", + " trelim (float): Optional, solver tree memory limit (in MB).\n", " Default: None (i.e., Pyomo/CPLEX default)\n", " solver (str): Solver choice. Currently only cplex or neos-cplex are supported\n", " Default: cplex\n", diff --git a/idaes_examples/archive/matopt/nanowire_design_src.ipynb b/idaes_examples/archive/matopt/nanowire_design_src.ipynb index 2111fb33..a1070c8e 100644 --- a/idaes_examples/archive/matopt/nanowire_design_src.ipynb +++ b/idaes_examples/archive/matopt/nanowire_design_src.ipynb @@ -40,7 +40,7 @@ "metadata": {}, "source": [ "## Importing Packages\n", - "We start by importing several standard Python modules for convienience. " + "We start by importing several standard Python modules for convenience. " ] }, { @@ -161,7 +161,7 @@ "source": [ "## Building a Model\n", "\n", - "In this example, we will build a model that maximizes the cohesive energy of the nanowire as an indicator of it's thermal stability. To begin, we start by creating a **MatOptModel** object to hold information about the model. Notice that we use a list of empty atoms as our set of building blocks because we will use a cohesive energy function for semiconductor materials that is indepedent of atom types. Thus, we do not need to specify the types of building blocks in our model." + "In this example, we will build a model that maximizes the cohesive energy of the nanowire as an indicator of it's thermal stability. To begin, we start by creating a **MatOptModel** object to hold information about the model. Notice that we use a list of empty atoms as our set of building blocks because we will use a cohesive energy function for semiconductor materials that is independent of atom types. Thus, we do not need to specify the types of building blocks in our model." ] }, { diff --git a/idaes_examples/archive/matopt/surface_design_src.ipynb b/idaes_examples/archive/matopt/surface_design_src.ipynb index 8923413b..49861f88 100644 --- a/idaes_examples/archive/matopt/surface_design_src.ipynb +++ b/idaes_examples/archive/matopt/surface_design_src.ipynb @@ -42,7 +42,7 @@ "metadata": {}, "source": [ "## Importing Packages\n", - "We start by importing several standard Python modules for convienience. " + "We start by importing several standard Python modules for convenience. " ] }, { @@ -211,7 +211,7 @@ "source": [ "First, we introduce two rules to fix special sites in the design. \n", "We fix the bottom two layers of atoms to exist, creating underlying bulk layers above which we will introduce nanostruced defets.\n", - "We also fix an arbitrary atom in the top layer, breaking symetry of the design space and resulting in easier to solve opitmization problems without actually restricting the designs that can be possibly represented. " + "We also fix an arbitrary atom in the top layer, breaking symmetry of the design space and resulting in easier to solve opitmization problems without actually restricting the designs that can be possibly represented. " ] }, { @@ -241,7 +241,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Next, we introduce constraints thtat require atoms to be placed on top of each other, avoiding hollow pockets below the surface. " + "Next, we introduce constraints that require atoms to be placed on top of each other, avoiding hollow pockets below the surface. " ] }, { @@ -311,7 +311,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Next, we define a simple model for the surface energy of nanostructured slabs as a piecwise linear function of coordination number. " + "Next, we define a simple model for the surface energy of nanostructured slabs as a piecewise linear function of coordination number. " ] }, { @@ -473,7 +473,7 @@ "metadata": {}, "source": [ "## Processing Solutions\n", - "Once the model is solved, we can plot the resulting design. However, it is often useful to label atoms according to some auxilliary information. In this case, we would like to label atoms that consitute ideal reactive sites. We loop over the sites and set the atom to S to highlight the sites that are reactive. Then, we can write the Design object to PDB or CFG files for plotting.\n", + "Once the model is solved, we can plot the resulting design. However, it is often useful to label atoms according to some auxiliary information. In this case, we would like to label atoms that constitute ideal reactive sites. We loop over the sites and set the atom to S to highlight the sites that are reactive. Then, we can write the Design object to PDB or CFG files for plotting.\n", "\n", "Additionally, we can manipulate the resulting design to better see the periodic pattern. Here, we replicate the design four times to see the periodic pattern. " ] diff --git a/idaes_examples/archive/power_gen/ngfc/NGFC_results.svg b/idaes_examples/archive/power_gen/ngfc/NGFC_results.svg index 6f97ba45..e15a7f3c 100644 --- a/idaes_examples/archive/power_gen/ngfc/NGFC_results.svg +++ b/idaes_examples/archive/power_gen/ngfc/NGFC_results.svg @@ -500,4 +500,4 @@ Pre-Reformer -621 K137 kPaSYN_INT:P:3,639 mol/sF:979 K137 kPaANODE_RECT:P:4,076 mol/sF:890 K105 kPaCATH_INT:P:34,162 mol/sF:998 K104 kPaCATH_OUTT:P:32,492 mol/sF:998 K104 kPaCATH_HX_HIT:P:16,246 mol/sF:288 K101 kPaAIRT:P:17,916 mol/sF:834 K137 kPaANODE_INT:P:8,029 mol/sF:978 K137 kPaANO_HX_HIT:P:5,080 mol/sF:825 K136 kPaANO_HX_HOT:P:5,080 mol/sF:814 K137 kPaANO_HX_CIT:P:7,715 mol/sF:978 K137 kPaANODE_OUTT:P:9,157 mol/sF:476 K102 kPaCATH_HX_HOT:P:16,246 mol/sF:1,002 K105 kPaCATH_RECT:P:16,246 mol/sF:297 K111 kPaCATH_HX_CIT:P:17,916 mol/sF:787 K105 kPaCATH_HX_COT:P:17,916 mol/sF:348.30.6617.3ROM InputsFuel Inlet Temperature (C):Internal Reformation fraction:Air Inlet Temperature (C):4,000Avg. Curent Density (A/m^2):0.5Air Recirculation fraction:2.1Oxygen to Carbon ratio:Fuel Utilization fraction:Air Utilization fraction:0.80.449558.7ROM OutputsDC Stack Power (MW):0.8668Stack Voltage (V):30.61264.97-673.02Heat Duties (MW)Anode Heat Exchanger:Cathode Heat Exchanger:Anode:48.0Reformer Recuperator:114.32Cathode:422 K206 kPaSTEAM_INT:P:464 mol/sF:310 K203 kPaAIR_INT:P:1,332 mol/sF:746 K206 kPaREF_INT:P:464 mol/sF:288 K3,447 kPaFUEL_INT:P:1,161 mol/sF:1,060 K137 kPaREF_OUTT:P:2,942 mol/sF:1,265 K95 kPaCOMB_OUTT:P:9,537 mol/sF:405 K94 kPaANOD_EXHT:P:9,537 mol/sF:476 K102 kPaCOMB_AIRT:P:4,873 mol/sF:405 K101 kPaCATH_EXHT:P:11,372 mol/sF:476 K102 kPaCATH_HRSG_INT:P:11,372 mol/sF:107.121.110.3Performance SummarySteam Turbine Power (MW):NG Expander Power (MW):Auxiliary Load (MW):541.9AC Stack Power (MW):659.8Net Power (MW):Thermal Input (MW):HHV Efficiency (%):CO2 Emissions (g/kWh):1,056.0291.262.481,010 K3,447 kPaHOT_FUELT:P:1,161 mol/sF: \ No newline at end of file +621 K137 kPaSYN_INT:P:3,642 mol/sF:979 K137 kPaANODE_RECT:P:4,084 mol/sF:890 K105 kPaCATH_INT:P:34,197 mol/sF:998 K104 kPaCATH_OUTT:P:32,525 mol/sF:998 K104 kPaCATH_HX_HIT:P:16,262 mol/sF:288 K101 kPaAIRT:P:17,934 mol/sF:834 K137 kPaANODE_INT:P:8,041 mol/sF:978 K137 kPaANO_HX_HIT:P:5,084 mol/sF:825 K136 kPaANO_HX_HOT:P:5,084 mol/sF:814 K137 kPaANO_HX_CIT:P:7,727 mol/sF:978 K137 kPaANODE_OUTT:P:9,169 mol/sF:476 K102 kPaCATH_HX_HOT:P:16,262 mol/sF:1,002 K105 kPaCATH_RECT:P:16,262 mol/sF:297 K111 kPaCATH_HX_CIT:P:17,934 mol/sF:787 K105 kPaCATH_HX_COT:P:17,934 mol/sF:348.30.6617.3ROM InputsFuel Inlet Temperature (C):Internal Reformation fraction:Air Inlet Temperature (C):4,000Avg. Current Density (A/m^2):0.5Air Recirculation fraction:2.1Oxygen to Carbon ratio:Fuel Utilization fraction:Air Utilization fraction:0.80.449559.3ROM OutputsDC Stack Power (MW):0.8668Stack Voltage (V):30.6265.17-673.92Heat Duties (MW)Anode Heat Exchanger:Cathode Heat Exchanger:Anode:48.1Reformer Recuperator:114.57Cathode:422 K206 kPaSTEAM_INT:P:464 mol/sF:310 K203 kPaAIR_INT:P:1,333 mol/sF:747 K206 kPaREF_INT:P:465 mol/sF:288 K3,447 kPaFUEL_INT:P:1,161 mol/sF:1,060 K137 kPaREF_OUTT:P:2,944 mol/sF:1,265 K95 kPaCOMB_OUTT:P:9,545 mol/sF:405 K94 kPaANOD_EXHT:P:9,546 mol/sF:476 K102 kPaCOMB_AIRT:P:4,878 mol/sF:405 K101 kPaCATH_EXHT:P:11,384 mol/sF:476 K102 kPaCATH_HRSG_INT:P:11,384 mol/sF:107.321.110.4Performance SummarySteam Turbine Power (MW):NG Expander Power (MW):Auxiliary Load (MW):542.6AC Stack Power (MW):660.6Net Power (MW):Thermal Input (MW):HHV Efficiency (%):CO2 Emissions (g/kWh):1,056.0291.262.561,012 K3,447 kPaHOT_FUELT:P:1,161 mol/sF: \ No newline at end of file diff --git a/idaes_examples/archive/power_gen/ngfc/NGFC_results_template.svg b/idaes_examples/archive/power_gen/ngfc/NGFC_results_template.svg index 3e9ebc6f..2079cfd2 100644 --- a/idaes_examples/archive/power_gen/ngfc/NGFC_results_template.svg +++ b/idaes_examples/archive/power_gen/ngfc/NGFC_results_template.svg @@ -3896,7 +3896,7 @@ y="493.27994" x="-444.19608" id="tspan9468-5-5-3" - sodipodi:role="line">Avg. Curent Density (A/m^2):Avg. Current Density (A/m^2):" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from IPython.display import Image\n", "\n", @@ -120,7 +132,7 @@ "\n", "The sequence of ```build_power_island()```, ```scale_flowsheet()```, ```set_power_island_inputs()```, and ```initialize_power_island()``` creates and initializes the unit models in the power island. At this stage, the inlet to the anode side of the power island is a guess of the syngas conditions. Then the solver is called to finalize the solution to the power island. The solution to the reformer section remains unaffected.\n", "\n", - "To combine the two sections ```connect_reformer_to_power_island()``` is called. The funtion unfixes the guess for the inlet to power island and connects the outlet of the reformer section to it. Then the solver is called a third time on the fully connected flowsheet.\n", + "To combine the two sections ```connect_reformer_to_power_island()``` is called. The function unfixes the guess for the inlet to power island and connects the outlet of the reformer section to it. Then the solver is called a third time on the fully connected flowsheet.\n", "\n", "In execution order, the flowsheet builds each of the two subsections, scales model constraints, sets inputs, initializes independently, and connects the two subsections.\n", "\n", @@ -1004,7 +1016,7 @@ "\t\t\t\n", "\t\t\tPre-Reformer\t\t\n", "\t\n", - "621 K137 kPaSYN_INT:P:3,639 mol/sF:979 K137 kPaANODE_RECT:P:4,076 mol/sF:890 K105 kPaCATH_INT:P:34,162 mol/sF:998 K104 kPaCATH_OUTT:P:32,492 mol/sF:998 K104 kPaCATH_HX_HIT:P:16,246 mol/sF:288 K101 kPaAIRT:P:17,916 mol/sF:834 K137 kPaANODE_INT:P:8,029 mol/sF:978 K137 kPaANO_HX_HIT:P:5,080 mol/sF:825 K136 kPaANO_HX_HOT:P:5,080 mol/sF:814 K137 kPaANO_HX_CIT:P:7,715 mol/sF:978 K137 kPaANODE_OUTT:P:9,157 mol/sF:476 K102 kPaCATH_HX_HOT:P:16,246 mol/sF:1,002 K105 kPaCATH_RECT:P:16,246 mol/sF:297 K111 kPaCATH_HX_CIT:P:17,916 mol/sF:787 K105 kPaCATH_HX_COT:P:17,916 mol/sF:348.30.6617.3ROM InputsFuel Inlet Temperature (C):Internal Reformation fraction:Air Inlet Temperature (C):4,000Avg. Curent Density (A/m^2):0.5Air Recirculation fraction:2.1Oxygen to Carbon ratio:Fuel Utilization fraction:Air Utilization fraction:0.80.449558.7ROM OutputsDC Stack Power (MW):0.8668Stack Voltage (V):30.61264.97-673.02Heat Duties (MW)Anode Heat Exchanger:Cathode Heat Exchanger:Anode:48.0Reformer Recuperator:114.32Cathode:422 K206 kPaSTEAM_INT:P:464 mol/sF:310 K203 kPaAIR_INT:P:1,332 mol/sF:746 K206 kPaREF_INT:P:464 mol/sF:288 K3,447 kPaFUEL_INT:P:1,161 mol/sF:1,060 K137 kPaREF_OUTT:P:2,942 mol/sF:1,265 K95 kPaCOMB_OUTT:P:9,537 mol/sF:405 K94 kPaANOD_EXHT:P:9,537 mol/sF:476 K102 kPaCOMB_AIRT:P:4,873 mol/sF:405 K101 kPaCATH_EXHT:P:11,372 mol/sF:476 K102 kPaCATH_HRSG_INT:P:11,372 mol/sF:107.121.110.3Performance SummarySteam Turbine Power (MW):NG Expander Power (MW):Auxiliary Load (MW):541.9AC Stack Power (MW):659.8Net Power (MW):Thermal Input (MW):HHV Efficiency (%):CO2 Emissions (g/kWh):1,056.0291.262.481,010 K3,447 kPaHOT_FUELT:P:1,161 mol/sF:" + "621 K137 kPaSYN_INT:P:3,642 mol/sF:979 K137 kPaANODE_RECT:P:4,084 mol/sF:890 K105 kPaCATH_INT:P:34,197 mol/sF:998 K104 kPaCATH_OUTT:P:32,525 mol/sF:998 K104 kPaCATH_HX_HIT:P:16,262 mol/sF:288 K101 kPaAIRT:P:17,934 mol/sF:834 K137 kPaANODE_INT:P:8,041 mol/sF:978 K137 kPaANO_HX_HIT:P:5,084 mol/sF:825 K136 kPaANO_HX_HOT:P:5,084 mol/sF:814 K137 kPaANO_HX_CIT:P:7,727 mol/sF:978 K137 kPaANODE_OUTT:P:9,169 mol/sF:476 K102 kPaCATH_HX_HOT:P:16,262 mol/sF:1,002 K105 kPaCATH_RECT:P:16,262 mol/sF:297 K111 kPaCATH_HX_CIT:P:17,934 mol/sF:787 K105 kPaCATH_HX_COT:P:17,934 mol/sF:348.30.6617.3ROM InputsFuel Inlet Temperature (C):Internal Reformation fraction:Air Inlet Temperature (C):4,000Avg. Current Density (A/m^2):0.5Air Recirculation fraction:2.1Oxygen to Carbon ratio:Fuel Utilization fraction:Air Utilization fraction:0.80.449559.3ROM OutputsDC Stack Power (MW):0.8668Stack Voltage (V):30.6265.17-673.92Heat Duties (MW)Anode Heat Exchanger:Cathode Heat Exchanger:Anode:48.1Reformer Recuperator:114.57Cathode:422 K206 kPaSTEAM_INT:P:464 mol/sF:310 K203 kPaAIR_INT:P:1,333 mol/sF:747 K206 kPaREF_INT:P:465 mol/sF:288 K3,447 kPaFUEL_INT:P:1,161 mol/sF:1,060 K137 kPaREF_OUTT:P:2,944 mol/sF:1,265 K95 kPaCOMB_OUTT:P:9,545 mol/sF:405 K94 kPaANOD_EXHT:P:9,546 mol/sF:476 K102 kPaCOMB_AIRT:P:4,878 mol/sF:405 K101 kPaCATH_EXHT:P:11,384 mol/sF:476 K102 kPaCATH_HRSG_INT:P:11,384 mol/sF:107.321.110.4Performance SummarySteam Turbine Power (MW):NG Expander Power (MW):Auxiliary Load (MW):542.6AC Stack Power (MW):660.6Net Power (MW):Thermal Input (MW):HHV Efficiency (%):CO2 Emissions (g/kWh):1,056.0291.262.561,012 K3,447 kPaHOT_FUELT:P:1,161 mol/sF:" ], "text/plain": [ "" diff --git a/idaes_examples/archive/power_gen/rsofc/cpu.py b/idaes_examples/archive/power_gen/rsofc/cpu.py index c7c6d9fe..346d24de 100644 --- a/idaes_examples/archive/power_gen/rsofc/cpu.py +++ b/idaes_examples/archive/power_gen/rsofc/cpu.py @@ -254,7 +254,7 @@ def make_vars(self): doc="Vent temperature [K]", ) - # Pressue [Pa] + # Pressure [Pa] self.inlet_pressure = Var( self.flowsheet().config.time, initialize=17, @@ -283,7 +283,7 @@ def make_vars(self): def add_material_balances(self): """ This section is for material balance constraints""" - # Sum of all componenet mole fractions in a stream equals 1 + # Sum of all components mole fractions in a stream equals 1 @self.Constraint( self.flowsheet().config.time, doc="PureCO2 stream: component mole flow equation", @@ -640,7 +640,7 @@ def initialize(blk, outlvl=idaeslog.NOTSET, solver=None, optarg=None): outlvl : sets output level of initialisation routine optarg : solver options dictionary object (default={'tol': 1e-6}) - solver : str indicating whcih solver to use during + solver : str indicating which solver to use during initialization (default = 'ipopt') Returns: diff --git a/idaes_examples/archive/power_gen/rsofc/rsofc_soec_flowsheet.py b/idaes_examples/archive/power_gen/rsofc/rsofc_soec_flowsheet.py index 9cc0e89c..5a229bbf 100644 --- a/idaes_examples/archive/power_gen/rsofc/rsofc_soec_flowsheet.py +++ b/idaes_examples/archive/power_gen/rsofc/rsofc_soec_flowsheet.py @@ -202,7 +202,7 @@ def add_asu(fs): fs.intercooler_s2.outlet.temperature.fix(310.93) # K (100 F) fs.intercooler_s2.deltaP.fix(-3447) # Pa (-0.5 psi) - # air seperation unit + # air separation unit fs.ASU.split_fraction[0, "O2_outlet", "CO2"].fix(1e-10) fs.ASU.split_fraction[0, "O2_outlet", "H2O"].fix(1e-10) fs.ASU.split_fraction[0, "O2_outlet", "N2"].fix(0.0005) @@ -401,7 +401,7 @@ def add_aux_boiler_steam(fs): ) # enthalpy outlet fs.bhx2.outlet.enth_mol.fix( h_bhx2 - ) # K (100 F) # unfix after initalize and spec Q from cmb + ) # K (100 F) # unfix after initialize and spec Q from cmb fs.bhx1.overall_heat_transfer_coefficient.fix(100) fs.bhx1.delta_temperature_out.fix(10) # fix DT for pinch side @@ -1407,7 +1407,7 @@ def set_guess(fs): fs.preheat_split.inlet, F=7765, T=700, P=1.04e5, comp=comp_guess, fix=True ) - # Set guess for temp, pressure and mole frac conditions to initalize soec + # Set guess for temp, pressure and mole frac conditions to initialize soec fs.soec_stack.fuel_inlet.flow_mol[0].fix(5600) fs.soec_stack.fuel_inlet.temperature[0].fix(1023.15) fs.soec_stack.fuel_inlet.pressure[0].fix(1.01325e5) diff --git a/idaes_examples/archive/power_gen/rsofc/rsofc_soec_mode_PFD.svg b/idaes_examples/archive/power_gen/rsofc/rsofc_soec_mode_PFD.svg index 4cb35a9d..7b7bdd24 100644 --- a/idaes_examples/archive/power_gen/rsofc/rsofc_soec_mode_PFD.svg +++ b/idaes_examples/archive/power_gen/rsofc/rsofc_soec_mode_PFD.svg @@ -753,7 +753,7 @@ style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:2.82222px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Bold';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;stroke-width:0.264583" id="tspan104298">compression + id="tspan124110">compression compression + id="tspan124110">compression Nitrogen ASU - Hydrogen purification andcompression + Hydrogen purification andcompression Water_in Water_out1 Water_out2 diff --git a/idaes_examples/archive/power_gen/rsofc/rsofc_soec_src.ipynb b/idaes_examples/archive/power_gen/rsofc/rsofc_soec_src.ipynb index d2d078fe..85c5c931 100644 --- a/idaes_examples/archive/power_gen/rsofc/rsofc_soec_src.ipynb +++ b/idaes_examples/archive/power_gen/rsofc/rsofc_soec_src.ipynb @@ -193,7 +193,7 @@ " Nitrogen\n", " ASU\n", " \n", - " Hydrogen purification andcompression\n", + " Hydrogen purification andcompression\n", " Water_in\n", " Water_out1\n", " Water_out2\n", diff --git a/idaes_examples/archive/power_gen/soec/soec.ipynb b/idaes_examples/archive/power_gen/soec/soec.ipynb index 35aec23e..1dedf2ab 100644 --- a/idaes_examples/archive/power_gen/soec/soec.ipynb +++ b/idaes_examples/archive/power_gen/soec/soec.ipynb @@ -1493,7 +1493,7 @@ " \n", " Summary:\n", " \n", - " SOEC Electric Power:SOEC Current:Cell Potential:Number of cells:SOEC Power/H2:H2 Product Rate:Single-pass H2O coversion:Sweep Blower Power:Feed Heater Power:Sweep Heater Power:Heat Pump Power:Heat Pump Water Draw:Compressor Power:Total electric Power:Total Power/H2:\n", + " SOEC Electric Power:SOEC Current:Cell Potential:Number of cells:SOEC Power/H2:H2 Product Rate:Single-pass H2O conversion:Sweep Blower Power:Feed Heater Power:Sweep Heater Power:Heat Pump Power:Heat Pump Water Draw:Compressor Power:Total electric Power:Total Power/H2:\n", " \n", " 638.539 MW\n", " -478.598 MA\n", @@ -3579,7 +3579,7 @@ " \n", " Summary:\n", " \n", - " SOEC Electric Power:SOEC Current:Cell Potential:Number of cells:SOEC Power/H2:H2 Product Rate:Single-pass H2O coversion:Sweep Blower Power:Feed Heater Power:Sweep Heater Power:Heat Pump Power:Heat Pump Water Draw:Compressor Power:Total electric Power:Total Power/H2:\n", + " SOEC Electric Power:SOEC Current:Cell Potential:Number of cells:SOEC Power/H2:H2 Product Rate:Single-pass H2O conversion:Sweep Blower Power:Feed Heater Power:Sweep Heater Power:Heat Pump Power:Heat Pump Water Draw:Compressor Power:Total electric Power:Total Power/H2:\n", " \n", " 638.539 MW\n", " -478.598 MA\n", diff --git a/idaes_examples/archive/power_gen/soec/soec.py b/idaes_examples/archive/power_gen/soec/soec.py index 9b13fa0b..96c82a32 100644 --- a/idaes_examples/archive/power_gen/soec/soec.py +++ b/idaes_examples/archive/power_gen/soec/soec.py @@ -1558,13 +1558,13 @@ def _add_tags(self): display_units=pyo.units.MW, ) tag_group["total_electric_power"] = iutil.ModelTag( - doc="Total electric power for SOEC and auxilaries", + doc="Total electric power for SOEC and auxiliaries", expr=self.total_electric_power[0], format_string="{:.3f}", display_units=pyo.units.MW, ) tag_group["total_electric_power_per_h2"] = iutil.ModelTag( - doc="Total electric power for SOEC and auxilaries per H2 produced", + doc="Total electric power for SOEC and auxiliaries per H2 produced", expr=self.total_electric_power_per_h2[0], format_string="{:.3f}", display_units=pyo.units.MJ / pyo.units.kg, diff --git a/idaes_examples/archive/power_gen/soec/soec_standalone_template.svg b/idaes_examples/archive/power_gen/soec/soec_standalone_template.svg index 5eb48e41..23203ac6 100644 --- a/idaes_examples/archive/power_gen/soec/soec_standalone_template.svg +++ b/idaes_examples/archive/power_gen/soec/soec_standalone_template.svg @@ -3684,7 +3684,7 @@ x="11.245358" y="153.43445" style="text-align:end;text-anchor:end;stroke-width:0.264583" - id="tspan1177">Single-pass H2O coversion:Single-pass H2O conversion:" ] @@ -1871,7 +1871,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA3jElEQVR4nO3dd3gVdfb48feh9w4KBAi9hdBCE0EUBBQFRd3FRQVRUde263cVUBBcGyhiVxYWRP0hSgcRFFGqghAEkgABQhFCryGUhJTz++NO2Asm4UpyMzfJeT3PfTL5TLln5iZz7sxn5oyoKsYYY8zVKuB2AMYYY3I3SyTGGGOyxBKJMcaYLLFEYowxJksskRhjjMmSQm4HkNMqVaqkwcHBbodhjDG5yvr164+pauX0xuW7RBIcHEx4eLjbYRhjTK4iIr9nNM5ObRljjMkSSyTGGGOyxBKJMcaYLMl3fSTpSUpKIjY2loSEBLdDMeaKihUrRlBQEIULF3Y7FGMASyQAxMbGUrp0aYKDgxERt8MxJkOqyvHjx4mNjaV27dpuh2MMYKe2AEhISKBixYqWREzAExEqVqxoR88moFgicVgSMbmF/a2aQGOJxBhj8rjzF1J4Y9FWYk+e88vyrY/EGGPysF92HmPorEj2njhHUPkS3N++Vra/hx2RBIj333+fxo0b079//ywva+DAgcycOTNLy5g7dy5btmzJciwbNmzg4YcfznD8nj17+PLLL7P8PleyYMECRo4cme64xMREunXrRosWLfj666/p0qVLjlU/yK7tbMzl4s4nMWx2BH+b+CsFBL4a3N4vSQQskQSMjz/+mIULFzJ16lS3QwGubgeXnJz8h7bXX3+dp556KsN5ciqR9OrVi/nz53Pu3B8P7Tds2EBSUhIbN27kr3/9a7a/d0pKSobjLJEYf/hhy2G6v7Ocr9ft49Eb6vDdPzrTvk5Fv72f305tichk4DbgiKqGeLU/BTwJJAPfqurzTvsw4CEgBXhaVb932lsDU4DiwELgGVVVESkKfA60Bo4Df1XVPVmN++VvNrPlwOmsLuYSTaqVYeTtTTMc/9hjj7Fr1y569+7NoEGDGDx4ME899RSRkZEkJyczatQo+vTpQ0pKCkOHDmXZsmUkJibyxBNP8Oijj6KqPPXUU/z000/Url2btMcnr127ltGjRzN79mzmzZtHv379iIuLIzU1lSZNmrBr1y4mTpzIhAkTuHDhAvXq1eOLL75g48aNzJ8/n+XLl/Pqq68ya9YsAJ544gmOHj1KiRIlmDhxIo0aNWLgwIFUqFCBDRs20KpVK95+++2L6xUfH09ERATNmzcHYPny5TzzzDOAp8N4xYoVDB06lK1bt9KiRQsGDBjA008/ne46njlzhj59+nDy5EmSkpJ49dVX6dOnD3v27KFnz55cf/31rFmzhubNm/Pggw8ycuRIjhw5wtSpU2nbti0iQpcuXViwYAF/+ctfLsZ45MgR7rvvPo4ePUqLFi0urmuaadOm8frrr6Oq9OrVizFjxjB9+nTWrFnDuHHjeO+993jvvffYtWsXO3fuZMCAAaxatYrg4GAGDRrE4sWLefLJJ4mPj8/SdjbGF8fOJDJq/mYWRByk0bWlmfhAGKFB5fz+vv7sI5kCfIhnZw+AiNwI9AFCVTVRRKo47U2AfkBToBqwREQaqGoK8AkwGFiDJ5H0BBbhSTonVbWeiPQDxgDZ/3UyB4wfP57vvvuOpUuXUqlSJV544QVuuukmJk+ezKlTp2jbti3dunVj6tSplC1blnXr1pGYmEjHjh3p3r07GzZsYNu2bURGRnL48GGaNGnCoEGDaNWqFRs2bABg5cqVhISEsG7dOpKTk2nXrh0Affv25ZFHHgFg+PDhTJo0iaeeeorevXtz2223cffddwPQtWtXxo8fT/369fn111/5+9//zk8//QTA9u3bWbJkCQULFrxkvcLDwwkJufgdgrFjx/LRRx/RsWNHzpw5Q7FixRg9ejRjx45lwYIFAEyYMCHddaxRowZz5syhTJkyHDt2jPbt29O7d28AYmJimDFjBhMmTKBNmzZ8+eWXrFq1ivnz5/P6668zd+5cAMLCwli5cuUliaRKlSr897//vSSGNAcOHGDIkCGsX7+e8uXL0717d+bOnUvnzp156623Lm7XihUrsn//flatWkWnTp0uzl+sWDFWrVoFwPHjx7O8nY3JiKoyb+MBXv5mM2cTU/i/mxvw6A11KVIoZ046+S2RqOoKEQm+rPlxYLSqJjrTHHHa+wBfOe27RSQGaCsie4AyqroaQEQ+B+7Ak0j6AKOc+WcCH4qIaNrX8auU2ZFDTlm8eDHz589n7NixgOc+l71797J48WIiIiIu9n/ExcWxY8cOVqxYwb333kvBggWpVq0aN910EwCFChWiXr16bN26lbVr1/Lss8+yYsUKUlJSLu7woqKiGD58OKdOneLMmTP06NHjD/GcOXOGX375hXvuuediW2Ji4sXhe+655w9JBODgwYNUrvy/qtMdO3bk2WefpX///vTt25egoKB01z29dQwKCuKFF15gxYoVFChQgP3793P48GEAateuTbNmzQBo2rQpXbt2RURo1qwZe/bsubjsKlWqcODAAR8+AY9169bRpUuXi+vQv39/VqxYwR133MGZM2eIj49n3759/O1vf2PFihWsXLmSvn37Xpzf+zRZdmxnY9Jz4NR5hs+N4qfoI7SsWY437wql/jWlczSGnL5qqwHQSUReAxKAf6nqOqA6niOONLFOW5IzfHk7zs99AKqaLCJxQEXg2OVvKiKD8RzVULNmzexcH79QVWbNmkXDhg3/0P7BBx/8YSe0cOHCDO8t6NSpE4sWLaJw4cJ069aNgQMHkpKScjFJDRw4kLlz59K8eXOmTJnCsmXL/rCM1NRUypUrx8aNG9N9j5IlS6bbXrx48UtunBs6dCi9evVi4cKFtG/fniVLlqS77umt45QpUzh69Cjr16+ncOHCBAcHX1x20aJFL05XoECBi78XKFDgkn6bhIQEihcvnm6s6cnsO0mHDh349NNPadiwIZ06dWLy5MmsXr36klN73tslO7azMd5SU5Uv1+5l9KJoUlKVl25rwoDrgilYIOfvM8rpzvZCQHmgPfAcMF08e8D01lwzaecK4y5tVJ2gqmGqGub9DTlQ9ejRgw8++ODijizt9FSPHj345JNPSEpKAjynlM6ePUvnzp356quvSElJ4eDBgyxduvTisjp37sy7775Lhw4dqFy5MsePHyc6OpqmTT1HXvHx8VStWpWkpKRLOvpLly5NfHw8AGXKlKF27drMmDED8OxgN23adMX1aNy4MTExMRd/37lzJ82aNWPIkCGEhYURHR19yftkto5xcXFUqVKFwoULs3TpUn7/PcNHI2Ro+/btl5xqu5J27dqxfPlyjh07RkpKCtOmTeOGG24APNt17NixdO7cmZYtW7J06VKKFi1K2bJl012WP7ezyX92HztLv4lrGD43ihY1yrH4n50ZdH1tV5II5HwiiQVmq8daIBWo5LTX8JouCDjgtAel0473PCJSCCgLnPBr9DlkxIgRJCUlERoaSkhICCNGjADg4YcfpkmTJrRq1YqQkBAeffRRkpOTufPOO6lfvz7NmjXj8ccfv7izA8/O8PDhw3Tu3BmA0NBQQkNDLx7BvPLKK7Rr146bb775kk7dfv368dZbb9GyZUt27tzJ1KlTmTRpEs2bN6dp06bMmzfviuvRqFEj4uLiLu4o3333XUJCQmjevDnFixfnlltuITQ0lEKFCtG8eXPeeeedDNexf//+hIeHExYWxtSpU6+qA3rp0qX06tXL5+mrVq3KG2+8wY033kjz5s1p1aoVffr0ATxHevv27aNz584ULFiQGjVqcP3112e4LH9uZ5N/JKekMn75Tnq+u4Log6d58+5QvnioLTUqlHA3MFX12wsIBqK8fn8M+Lcz3ADPqSnB08m+CSgK1AZ2AQWd6dbhOYIRPH0jtzrtTwDjneF+wHRfYmrdurVebsuWLX9oM9lj3LhxOnHiRLfD0EOHDulNN93kdhjZxv5m858tB+L0tvdXaq0hC3Tw5+v0cNz5HH1/IFwz2K/68/LfaUAXoJKIxAIjgcnAZBGJAi4AA5wAN4vIdGALnsuCn1DPFVvg6aCfgufy30XOC2AS8IXTMX/CSSYmwDz++OMXT9W4ae/evZf0XxiTWyQmp/DhTzF8smwn5UoU5uP+rbgl5NqAqrkmmrWLnHKdsLAwvfyu5a1bt9KoUaOA+mCMyYiqEh0dTePGjd0OxfjZ+t9PMmRWBDFHztC3ZXVG3NaE8iWLuBKLiKxX1bD0xlmtLTzX+x8/ftxKyZuAp87zSIoVK+Z2KMaPziYmM3bxNqb8sodqZYsz5cE2dGlYxe2wMmSJBAgKCiI2NpajR4+6HYoxV5T2hESTN63ccZRhsyOJPXmeAR1q8VzPRpQqGti76sCOLocULlzYnjZnjHFV3LkkXlu4henhsdSpXJIZj3WgTXAFt8PyiSUSY4xx2XdRhxgxL4oTZy/w9y51ebprfYoV/mO1iEBlicQYY1xyJD6BUfM3szDyEE2qluHTgW0IqZ7+Ta2BzBKJMcbkMFVl1m/7eWXBFs4npfBcj4YM7lyHwgVz55M9LJEYY0wOij15jhfmRLFi+1Fa1yrPmLtCqVellNthZYklEmOMyQGpqcoXa35nzHfRALzcuyn3t69FAZfqY2UnSyTGGONnO4+eYcjMCMJ/P0nnBpV5/c4Qgsq7XB8rG1kiMcYYP0lKSWXCil289+MOihcuyNh7mnNXq+p57sZnSyTGGOMHUfvjeH5mBFsOnubWZtcyqndTqpTOmxUJLJEYY0w2SkhK4b0fdzBhxS7KlyjC+Pta0TOkqtth+ZUlEmOMySbr9pxgyMwIdh07yz2tgxjeqwllSxR2Oyy/s0RijDFZdCYxmTe/i+bz1b9TvVxxPh/Uls4NAv9prNnFEokxxmTB8u1HeWF2JAfizjPwumCe69GQkgFeZDG75a+1NcaYbHLq3AX+vWALs3/bT93KJZnxaAfCckmRxexmicQYY/6khZEHeWleFCfPJfHkjfV48qZ6uarIYnazRGKMMT46cjqBEfOi+H7zYZpWK8Nng9rStFruK7KY3SyRGGPMFagqM9bH8uqCLSQkpzKkZyMe6VSbQrm0yGJ2s0RijDGZ2HfiHMNmR7Iq5hhtgysw+q5m1Kmcu4ssZjdLJMYYk46UVOXz1Xt487ttFBB4pU9T+rfLG0UWs5slEmOMuUzMkXienxnBb3tPcUODyrzetxnVyxV3O6yAZYnEGGMcSSmp/Gf5Tt7/MYYSRQsy7i/NubNl3iuymN0skRhjDBAZG8dzMzcRfSieXqFVGXV7UyqXLup2WLmCJRJjTL6WkJTCu0t2MHHlLiqULMJ/7m9Nj6bXuh1WrmKJxBiTb/266zhDZ0ey+9hZ/hpWgxdubZwviixmN0skxph8Jz4hiTHfRfP/1uylRoXiTH24HR3rVXI7rFzLEokxJl9ZGn2EF+dEcvB0AoM61uZfPRpQoojtCrPCtp4xJl84cfYCryzYwpwN+6lfpRSzHr+OVjXLux1WnuC3+/tFZLKIHBGRqHTG/UtEVEQqebUNE5EYEdkmIj282luLSKQz7n1xrsMTkaIi8rXT/quIBPtrXYwxuZeqsiDiADePW843mw7w9E31WPD09ZZEspE/C8VMAXpe3igiNYCbgb1ebU2AfkBTZ56PRSStlOYnwGCgvvNKW+ZDwElVrQe8A4zxy1oYY3Ktw6cTGPzFep78cgPVyxfnm6eu59nuDSlaKP9W6vUHvyUSVV0BnEhn1DvA84B6tfUBvlLVRFXdDcQAbUWkKlBGVVerqgKfA3d4zfOZMzwT6Cp215AxBs9RyNfr9tJt3HJWbD/KC7c2Yvbj19G4ahm3Q8uTcrSPRER6A/tVddNl+/zqwBqv32OdtiRn+PL2tHn2AahqsojEARWBY+m872A8RzXUrFkzW9bFGBOY9h4/x9DZEfyy8zjtaldgzF2hBFcq6XZYeVqOJRIRKQG8CHRPb3Q6bZpJe2bz/LFRdQIwASAsLCzdaYwxuVtKqvLpz7sZu3gbhQoU4LU7Q7i3TU0rspgDcvKIpC5QG0g7GgkCfhORtniONGp4TRsEHHDag9Jpx2ueWBEpBJQl/VNpxpg8bvthT5HFjftOcVOjKrx2ZwhVy1qRxZySY4lEVSOBKmm/i8geIExVj4nIfOBLERkHVMPTqb5WVVNEJF5E2gO/Ag8AHziLmA8MAFYDdwM/Of0oxph84kJyKp8s28mHS3dQqmgh3uvXgt7Nq1mRxRzmt0QiItOALkAlEYkFRqrqpPSmVdXNIjId2AIkA0+oaooz+nE8V4AVBxY5L4BJwBciEoPnSKSfn1bFGBOANu07xZBZEUQfiqd382qMvL0JFUtZkUU3SH77Eh8WFqbh4eFuh2GMuUrnL6TwzpLt/HflLqqULsard4TQrck1boeV54nIelUNS2+c3dlujMk1Vu88zrDZEew5fo5729Zk2K2NKFPMiiy6zRKJMSbgnU5IYvSiaL78dS+1Kpbgy0facV1dK7IYKCyRGGMC2o9bD/PinCiOxCfwSKfaPHtzQ4oXsTvTA4klEmNMQDp+JpGXv9nC/E0HaHhNacbf35oWNcq5HZZJhyUSY0xAUVXmbzrAy99sIT4hiX92a8DjXepSpJA/SwOarLBEYowJGAfjzjN8ThQ/Rh+heY1yvHlXKA2vLe12WOYKLJEYY1yXmqpMW7eXNxZGk5yayvBejXmwY20KWnmTXMESiTHGVXuOnWXo7AjW7DpBhzoVGX1XM2pVtCKLuYklEmOMK5JTUpn8827eXrydIgULMLpvM/7apoaVN8mFLJEYY3Jc9KHTDJkZwabYOLo1voZX7wjh2rLF3A7LXCVLJMaYHJOYnMJHS3fy8dIYyhYvzAf3tuS20Kp2FJLLWSIxxuSI3/aeZMjMCHYcOcOdLasz4rYmVChZxO2wTDawRGKM8atzF5J5e/F2Jv+8m2vLFGPywDBuamRFFvMSSyTGGL/5OeYYQ2dHsO/Eefq3q8nQWxpR2oos5jmWSIwx2S7ufBJvLNzKV+v2UbtSSb4a3J72dSq6HZbxkysmEhG5B/hOVeNFZDjQCnhVVX/ze3TGmFxn8eZDDJ8bxbEziTx6Qx3+2a0BxQpbkcW8zJcjkhGqOkNErgd6AGOBT4B2fo3MGJOrHDuTyKj5m1kQcZBG15bmvwPCCA0q53ZYJgf4kkjSHnnbC/hEVeeJyCj/hWSMyU1Ulbkb9/PyN1s4l5jC/93cgMe61KVwQSuymF/4kkj2i8h/gG7AGBEpCthfiDGGA6fO8+KcSJZuO0qrmuUYc1co9a+xIov5jS+J5C9AT2Csqp4SkarAc/4NyxgTyFJTlalr9zJmUTQpqcrI25vwQIdgK7KYT2WYSEQkHPgZWAQsVNUEAFU9CBzMmfCMMYFm97GzDJkVwdrdJ7i+XiXe6NuMGhVKuB2WcVFmRyTtgevxHI28LCLHge+BRaq6PSeCM8YEjuSUVP67ajfv/LCdooUK8ObdodzTOsjKm5iME4mqJgPLnBfOKa1bgFdFpD6wWlX/ngMxGmNctuXAaYbMiiByfxw9ml7DK31CqFLGiiwaD59vSHROaU0GJotIAaCD36IyxgSExOQUPvwphk+W7aRcicJ83L8Vt4Rca0ch5hKZ9ZF8A2hG41W1t18iMsYEhPW/n2TIrAhijpzhrlZBjLitMeVKWJFF80eZHZGMzbEojDEB42xiMmMXb2PKL3uoVrY4nw1qyw0NKrsdlglgmfWRLE8bFpEiQAPn122qmuTvwIwxOW/ljqMMmx1J7MnzDOhQi+d6NqJUUSvJZzLnS62tLsBnwB5AgBoiMkBVV/g1MmNMjok7l8Sr325hxvpY6lQuyYzHOtAmuILbYZlcwpevGm8D3VV1G4CINACmAa39GZgxJmd8F3WQEfM2c+LsBf7epS5Pd61vRRbNn+JLIimclkQAVHW7iNgDBYzJ5Y7EJzBy3mYWRR2iSdUyfDqwDSHVy7odlsmFfKmZFS4ik0Ski/OaCKy/0kwiMllEjohIlFfbWyISLSIRIjJHRMp5jRsmIjEisk1Eeni1txaRSGfc++JcdygiRUXka6f9VxEJ/jMrbkx+parMXB/LzeNW8GP0EZ7r0ZB5T3a0JGKumi+J5HFgM/A08AywBXjMh/mm4Lkr3tsPQIiqhgLbgWEAItIE6Ac0deb5WETSjq0/AQYD9Z1X2jIfAk6qaj3gHWCMDzEZk6/FnjzHgE/X8a8Zm6hfpRQLn+7EEzfWs0q9JkuueGpLVROBcc7LZ6q64vKjBFVd7PXrGuBuZ7gP8JXzXrtFJAZoKyJ7gDKquhpARD4H7sBT/6sPMMqZfybwoYiIqmZ474sx+VVqqvLFmt8Z8100AC/3bsr97WtRwIosmmzgy1VbtwGvALWc6QVQVS2TxfceBHztDFfHk1jSxDptSc7w5e1p8+zDE0yyiMQBFYFj6azDYDxHNdSsWTOLYRuTu8QcOcPQWRGE/36Szg0q8/qdIQSVtyKLJvv40tn+LtAXiMyub/si8iKQDExNa0pnMs2kPbN5/tioOgGYABAWFmZHLCZfSEpJZcKKXby3ZAfFixTk7Xua07dVdStvYrKdL4lkHxCVjUlkAHAb0NVrmbFADa/JgoADTntQOu3e88SKSCGgLHAiO2I0JreL2h/H8zMj2HLwNLc2u5aXe4dQuXRRt8MyeZQvieR5YKGILAcS0xpV9U/1mQCISE9gCHCDqp7zGjUf+FJExgHV8HSqr1XVFBGJF5H2wK/AA8AHXvMMAFbj6Wv5yfpHTH6XkJTCez/uYMKKXVQoWYTx97WiZ0hVt8MyeZwvieQ14AxQDPC5YpuITAO6AJVEJBYYiecqraLAD87h9RpVfUxVN4vIdDxXhCUDT6hq2rPiH8dzBVhxPJ3si5z2ScAXTsf8CTxXfRmTb63bc4IhMyPYdews97QOYnivJpQtYbd8Gf+TK32JF5FwVQ3LoXj8LiwsTMPDw90Ow5hscyYxmTe/i+bz1b8TVL44b/RtRqf6VmTRZC8RWZ9RLvDliGSJiHS/7NJdY0wAWLbtCC/OieJA3HkGXhfMcz0aUtKKLJoc5stf3BPA8yKSiOdy3Oy6/NcYc5VOnr3AK99uYfZv+6lbuSQzH+tA61pWZNG4w5cbEkvnRCDGmCtTVRZFHeKleVGcOpfEkzfW48mb6lmRReMqOwY2Jpc4cjqBEfOi+H7zYUKql+GzQW1pWs3qYxn3WSIxJsCpKjPWx/Lqgi0kJKcypGcjHulUm0JWH8sECEskxgSwfSfOMWx2JKtijtE2uAKj72pGncql3A7LmEv4lEhE5Hqgvqp+KiKVgVKqutu/oRmTf6WkKp/9soe3vt9GAYFX7gihf9uaVmTRBCRfijaOBMKAhsCnQGHg/wEd/RuaMfnTjsPxDJkVwW97T9GlYWVeu7MZ1csVdzssYzLkyxHJnUBL4DcAVT0gInYllzHZLCkllfHLdvLBTzGUKFqQd/7anDtaWJFFE/h8SSQXVFVFRAFEpKSfYzIm34mMjeO5mZuIPhTPbaFVGdW7KZVKWZFFkzv4kkimi8h/gHIi8gie54j8179hGZM/JCSl8M6S7UxcsYtKpYoy4f7WdG96rdthGfOn+HJD4lgRuRk4jaef5CVV/cHvkRmTx63ZdZxhsyPZfews/drUYNitjSlb3IosmtzHl872Mao6BM/z1i9vM8b8SfEJSYxeFM3UX/dSo0Jxpj7cjo71KrkdljFXzZdTWzfjeYaIt1vSaTPGXMHS6CO8MCeSw6cTePj62jzbvQElitjtXCZ3y/AvWEQeB/4O1BGRCK9RpYGf/R2YMXnJibMX+Pc3m5m78QD1q5Ti48evo2XN8m6HZUy2yOyr0Jd4HiL1BjDUqz1eVe2Rtsb4QFVZEHGQUfM3E3c+iae71ueJG+tStJAVWTR5R4aJRFXjgDjgXgARqYLnKYmlRKSUqu7NmRCNyZ0OxSUwfG4US7YeJjSoLFMfaUeja+3pCybv8aWz/XYg7VnqR4BawFagqX9DMyZ3UlW+WreP17/dSlJqKi/e2pgHOwZbkUWTZ/nSy/cq0B5YoqotReRGnKMUY8ylfj9+lqGzIlm96zjt61RgdN9QgivZPbwmb/MlkSSp6nERKSAiBVR1qYiM8XtkxuQiKanKpz/vZuzibRQuUIDX72xGvzY1rMiiyRd8SSSnRKQUsAKYKiJHgGT/hmVM7rHtUDzPz4pg075TdG1UhVfvDKFqWSuyaPIPXxJJH+A88E+gP1AW+Lc/gzImN7iQnMrHy2L4aGkMpYsV5r1+LejdvJoVWTT5TqaJREQKAvNUtRuQCnyWI1EZE+A27jvFkJkRbDscT58W1XjptiZUtCKLJp/KNJGoaoqInBORss7lwMbka+cvpDDuh21MWrWbKqWLMWlAGF0bX+N2WMa4ypdTWwlApIj8AJxNa1TVp/0WlTEB6Jedxxg6K5K9J87xt3Y1GXpLI8oUsyKLxviSSL51XsbkS6cTknhjYTTT1u6lVsUSTHukPR3qVnQ7LGMChi+JZB+wRlXP+TsYYwLNki2HeXFuJEfjExncuQ7/7NaA4kWsvIkx3nxJJAOB8SJyHFjpvFap6kl/BmaMm46fSeTlb7Ywf9MBGl1bmgn3h9G8Rjm3wzImIPnyYKsHAESkGnA38BGecilW+9rkOarK/E0HGDV/M2cSk3n25gY8dkNdihSy8ibGZOSK/x0icp/zqN2ZQDfgQ6CTD/NNFpEjIhLl1VZBRH4QkR3Oz/Je44aJSIyIbBORHl7trUUk0hn3vjgX6YtIURH52mn/VUSC/9SaG3OZg3HnefizcJ75aiO1Kpbk26c78XTX+pZEjLkCX/5D3gVaABOBp1X1TVVd7cN8U4Cel7UNBX5U1frAj87viEgToB+eQpA9gY+de1gAPgEGA/WdV9oyHwJOqmo94B3AyraYq5Kaqkz99XduHreCX3YeZ8RtTZj1+HU0uKa026EZkytcMZGoaiVgEJ4S8q+JyFoR+cKH+VYAlz+3pA//u6nxM+AOr/avVDVRVXcDMUBbEakKlFHV1aqqwOeXzZO2rJlA17SjFWN8tfvYWe6duIYX50TRvEZZvv9HZx66vjYFrUaWMT7zpYx8GaAmnvLxwXhKpKRe5ftdo6oHAVT1oPOME4DqwBqv6WKdtiRn+PL2tHn2OctKFpE4oCJwLJ11GIznqIaaNWteZegmL0lOSWXyz7t5e/F2ihQqwJi7mvGXsBpW3sSYq+BLh/kqr9eHqhp7hemvRnr/vZpJe2bz/LFRdQIwASAsLCzdaUz+sfXgaYbMiiAiNo6bm1zDq3eEcE2ZYm6HZUyu5ctVW6EAIlKaDHbUf8JhEanqHI1UxfOgLPAcadTwmi4IOOC0B6XT7j1PrIgUwnOkZI8ANhlKTE7ho6U7+XhpDOVKFOajv7Xi1mbX2lGIMVnky1VbISKyAYgCtojIehEJucr3mw8McIYHAPO82vs5V2LVxtOpvtY5DRYvIu2d/o8HLpsnbVl3Az85/SjG/MFve09y2/ureP/HHfRuXo0f/nkDvUKrWhIxJhv4cmprAvCsqi4FEJEuTtt1mc0kItOALkAlEYkFRgKjgeki8hCwF7gHQFU3i8h0YAueZ508oaopzqIex3MFWHFgkfMCmAR8ISIxeI5E+vmwLiafOXchmbcXb2fyz7upWqYYnz7YhhsbVrnyjMYYn8mVvsSLyCZVbX6lttwiLCxMw8PD3Q7D5ICfY44xdHYE+06c5772NRnSsxGlrciiMVdFRNaralh643w5ItklIiOAtEt+7wN2Z1dwxmS3uPNJvP7tVr4O30ftSiX5enB72tWxIovG+IsviWQQ8DIwG8+VUiuAB/0ZlDFXa/HmQwyfG8Xxsxd47Ia6/KNbfYoVtiKLxviTL1dtnQTs2SMmoB2NT2TUN5v5NuIgjauWYdKANjQLKut2WMbkCxkmEhH5hkwu91XV3n6JyJg/QVWZs2E//16whXOJKTzXoyGDO9ehcEGrj2VMTsnsiGRsjkVhzFXYf+o8L86JZNm2o7SqWY437w6lXhWrj2VMTssskexW1b05FokxPkorsjh6UTQKjLq9Cfd3CLb6WMa4JLNEMhdoBSAis1T1rhyJyJhM7Dp6hqGzIlm75wSd6lfi9TubUaNCCbfDMiZfyyyReH+9q+PvQIzJTHJKKhNX7uadJdspVqgAb90dyt2tg+zOdGMCQGaJRDMYNiZHbT4Qx5BZEUTtP03Pptfy7z5NqWJFFo0JGJklkuYichrPkUlxZxjnd1XVMn6PzuRrCUkpfPDTDsYv30X5EkX4uH8rbm1W1e2wjDGXyTCRqKrdxWVcs/73Ezw/M4KdR89yV6sgRtzWmHIlirgdljEmHb7c2W5MjjmbmMxb32/js9V7qFa2OJ8NassNDSq7HZYxJhOWSEzAWLH9KMNmR3Ig7jwPtK/Fcz0bUaqo/YkaE+jsv9S47tS5C7z67VZmro+lTuWSTH+0A22CK7gdljHGR5ZIjKsWRR5kxLzNnDx3gb93qcvTXa3IojG5jSUS44oj8QmMnLeZRVGHaFK1DFMebENIdSuyaExuZInE5ChVZeb6WF79divnk6zIojF5gSUSk2P2nTjHC3MiWbnjGGG1yjP6rlDqVSnldljGmCyyRGL8LjVV+Xz1Ht78fhsAL/duyv3ta1HAiiwakydYIjF+FXMkniGzIln/+0k61a/EG32bEVTeiiwak5dYIjF+kZSSyoQVu3hvyQ6KFynI2/c0p2+r6lZk0Zg8yBKJyXZR++N4fmYEWw6e5tZm1/Jy7xAqly7qdljGGD+xRGKyTUJSCu/9uIMJK3ZRoWQRxt/Xip4hVmTRmLzOEonJFuv2nGDIzAh2HTvLX8KCePHWJpQtUdjtsIwxOcASicmSM4nJvPldNJ+v/p2g8sX5fw+14/r6ldwOyxiTgyyRmKu2bNsRXpwTxYG48zzYMZh/dW9ISSuyaEy+Y//15k87efYCr3y7hdm/7adelVLMfOw6Wtcq73ZYxhiXWCIxPlNVFkUd4qV5UZw6l8TTN9XjiZvqUbSQFVk0Jj+zRGJ8cuR0AiPmRfH95sM0q16Wzwe1o0k1e9qyMQZcqZQnIv8Ukc0iEiUi00SkmIhUEJEfRGSH87O81/TDRCRGRLaJSA+v9tYiEumMe1/sbrdsp6pMX7ePruOWs2zbUYbd0og5f7/Okogx5qIcTyQiUh14GghT1RCgINAPGAr8qKr1gR+d3xGRJs74pkBP4GMRSTuX8gkwGKjvvHrm4KrkeftOnOP+SWt5flYEjauW4bt/dObRG+pSyCr1GmO8uHVqqxBQXESSgBLAAWAY0MUZ/xmwDBgC9AG+UtVEYLeIxABtRWQPUEZVVwOIyOfAHcCiHFuLPColVfnslz289f02ChYQXr0jhL+1rWlFFo0x6crxRKKq+0VkLLAXOA8sVtXFInKNqh50pjkoIlWcWaoDa7wWEeu0JTnDl7f/gYgMxnPkQs2aNbNzdfKcHYfjeX5WBBv2nuLGhpV57c5mVCtX3O2wjDEBLMcTidP30QeoDZwCZojIfZnNkk6bZtL+x0bVCcAEgLCwsHSnye8uJKcyfvlOPvwphpJFC/LuX1vQp0U1K7JojLkiN05tdQN2q+pRABGZDVwHHBaRqs7RSFXgiDN9LFDDa/4gPKfCYp3hy9vNnxQRe4rnZ0YQfSie25tXY+TtTahUyoosGmN840av6V6gvYiUcK6y6gpsBeYDA5xpBgDznOH5QD8RKSoitfF0qq91ToPFi0h7ZzkPeM1jfJCQlMIbC7dyx0c/c/LcBSY+EMYH97a0JGKM+VPc6CP5VURmAr8BycAGPKedSgHTReQhPMnmHmf6zSIyHdjiTP+EqqY4i3scmAIUx9PJbh3tPlqz6zhDZ0Ww5/g57m1bg2G3NqZMMSuyaIz580Q1f3UZhIWFaXh4uNthuCY+IYnRi6KZ+utealYowei+zbiunhVZNMZkTkTWq2pYeuPszvZ85Kfow7w4J4rDpxN4+Pra/F/3hhQvYuVNjDFZY4kkHzhx9gL//mYzczceoME1pfi4/3W0rGlFFo0x2cMSSR6mqnwTcZBR8zcTn5DEM13r88SN9ShSyO5MN8ZkH0skedShuASGz41iydbDNK9RjjfvCqXhtaXdDssYkwdZIsljVJWv1u3j9W+3kpSayvBejXmwY20KWnkTY4yfWCLJQ34/fpahsyJZves4HepUZPRdzahVsaTbYRlj8jhLJHlASqry6c+7Gbt4G4ULFOCNvs3o16aGlTcxxuQISyS53LZDniKLm/adolvjKrx6RzOuLVvM7bCMMfmIJZJc6kJyKh8vi+GjpTGULlaY9+9tye2hVe0oxBiT4yyR5EIb951iyMwIth2Op0+Laoy8vSkVShZxOyxjTD5liSQXOX8hhXE/bGPSqt1UKV2MSQPC6Nr4GrfDMsbkc5ZIcolfdh5j6KxI9p44R/92NRlySyMrsmiMCQiWSALc6YQk3lgYzbS1e6lVsQTTHmlPh7oV3Q7LGGMuskQSwJZsOcyLcyM5Gp/Io53r8I9uDazIojEm4FgiCUDHzyQy6pstfLPpAI2uLc3EB8IIDSrndljGGJMuSyQBRFWZv+kAo+Zv5kxiMs/e3IDHbqhrRRaNMQHNEkmAOHDqPMPnRvFT9BFa1izHmLtCaXCNFVk0xgQ+SyQuS01Vpq3byxsLo0lJVV66rQkDrgu2IovGmFzDEomLdh87y9BZEfy6+wQd61XkjTtDqVmxhNthGWPMn2KJxAXJKalMWrWbcT9sp0ihArx5Vyj3hAVZeRNjTK5kiSSHbT14miGzIoiIjaN7k2t45Y4QriljRRaNMbmXJZIckpicwkc/xfDxsp2UK1GYj/7WilubXWtHIcaYXM8SSQ74be9JhsyMYMeRM/RtWZ0RtzWhvBVZNMbkEZZI/OjchWTGfr+dT3/ZTdUyxfj0wTbc2LCK22EZY0y2skTiJ6t2HGPYnAj2nTjPAx1q8XzPRpQqapvbGJP32J4tm8WdT+K1b7cwPTyW2pVKMv3RDrStXcHtsIwxxm8skWSj7zcfYsTcKI6fvcDjXeryTNf6FCtsRRaNMXmbJZJscDQ+kVHzN/Nt5EEaVy3DpAFtaBZU1u2wjDEmR1giyQJVZc6G/fx7wRbOJabwXI+GDO5ch8IFrciiMSb/cGWPJyLlRGSmiESLyFYR6SAiFUTkBxHZ4fws7zX9MBGJEZFtItLDq721iEQ6496XHLwpY/+p8wz8dB3PTt9E3cqlWPhMJ564sZ4lEWNMvuPWXu894DtVbQQ0B7YCQ4EfVbU+8KPzOyLSBOgHNAV6Ah+LSFrHwyfAYKC+8+rp78BTU5XPV++h+7jlrNtzglG3N2HGox2oV6WUv9/aGGMCUo6f2hKRMkBnYCCAql4ALohIH6CLM9lnwDJgCNAH+EpVE4HdIhIDtBWRPUAZVV3tLPdz4A5gkb9i33n0DENnRbBuz0k61a/E63c2o0YFK7JojMnf3OgjqQMcBT4VkebAeuAZ4BpVPQigqgdFJO3OverAGq/5Y522JGf48na/mL5uH8PnRVGsUAHeujuUu1tbkUVjjAF3Tm0VAloBn6hqS+AszmmsDKS3t9ZM2v+4AJHBIhIuIuFHjx79s/ECULtySbo2qsKS/7uBe8JqWBIxxhiHG0cksUCsqv7q/D4TTyI5LCJVnaORqsARr+lreM0fBBxw2oPSaf8DVZ0ATAAICwtLN9lcSZvgCrQJthsLjTHmcjl+RKKqh4B9ItLQaeoKbAHmAwOctgHAPGd4PtBPRIqKSG08neprndNg8SLS3rla6wGveYwxxuQQt+4jeQqYKiJFgF3Ag3iS2nQReQjYC9wDoKqbRWQ6nmSTDDyhqinOch4HpgDF8XSy+62j3RhjTPpE9arO9ORaYWFhGh4e7nYYxhiTq4jIelUNS2+c3T1njDEmSyyRGGOMyRJLJMYYY7LEEokxxpgssURijDEmS/LdVVsichT43e04MlAJOOZ2EJmw+LIm0OODwI/R4suarMRXS1Urpzci3yWSQCYi4RldXhcILL6sCfT4IPBjtPiyxl/x2aktY4wxWWKJxBhjTJZYIgksE9wO4AosvqwJ9Pgg8GO0+LLGL/FZH4kxxpgssSMSY4wxWWKJxBhjTJZYInGJiNQQkaUislVENovIM077KBHZLyIbndetLsa4R0QinTjCnbYKIvKDiOxwfpZ3KbaGXttoo4icFpF/uLn9RGSyiBwRkSivtgy3l4gME5EYEdkmIj1ciu8tEYkWkQgRmSMi5Zz2YBE577Udx7sUX4afZ4Bsv6+9YtsjIhuddje2X0b7FP//DaqqvVx4AVWBVs5waWA70AQYBfzL7ficuPYAlS5rexMY6gwPBcYEQJwFgUNALTe3H9AZz2Oko660vZzPehNQFKgN7AQKuhBfd6CQMzzGK75g7+lc3H7pfp6Bsv0uG/828JKL2y+jfYrf/wbtiMQlqnpQVX9zhuOBrUB1d6PySR/gM2f4M+AO90K5qCuwU1VdrVigqiuAE5c1Z7S9+gBfqWqiqu4GYoC2OR2fqi5W1WTn1zVc+vjqHJXB9stIQGy/NM5TWv8CTPNnDJnJZJ/i979BSyQBQESCgZZA2nPsn3RONUx269SRQ4HFIrJeRAY7bdeo5zHHOD+ruBbd//Tj0n/gQNl+kPH2qg7s85ouFve/SAzi0qeM1haRDSKyXEQ6uRUU6X+egbb9OgGHVXWHV5tr2++yfYrf/wYtkbhMREoBs4B/qOpp4BOgLtACOIjncNktHVW1FXAL8ISIdHYxlnSJ53HNvYEZTlMgbb/MSDptrl2LLyIv4nmU9VSn6SBQU1VbAs8CX4pIGRdCy+jzDKjtB9zLpV9mXNt+6exTMpw0nbar2oaWSFwkIoXxfOBTVXU2gKoeVtUUVU0FJuLnw/XMqOoB5+cRYI4Ty2ERqQrg/DziVnyOW4DfVPUwBNb2c2S0vWKBGl7TBQEHcjg2AERkAHAb0F+dk+fO6Y7jzvB6POfPG+R0bJl8noG0/QoBfYGv09rc2n7p7VPIgb9BSyQucc6pTgK2quo4r/aqXpPdCURdPm9OEJGSIlI6bRhPp2wUMB8Y4Ew2AJjnRnxeLvkmGCjbz0tG22s+0E9EiopIbaA+sDangxORnsAQoLeqnvNqrywiBZ3hOk58u1yIL6PPMyC2n6MbEK2qsWkNbmy/jPYp5MTfYE5eVWCvS66wuB7PYWQEsNF53Qp8AUQ67fOBqi7FVwfPFR2bgM3Ai057ReBHYIfzs4KL27AEcBwo69Xm2vbDk9AOAkl4vu09lNn2Al7E8011G3CLS/HF4DlPnvY3ON6Z9i7nc98E/Abc7lJ8GX6egbD9nPYpwGOXTevG9ston+L3v0ErkWKMMSZL7NSWMcaYLLFEYowxJksskRhjjMkSSyTGGGOyxBKJMcaYLLFEYgKWU0E1W+4DEZEuInKdj9PuEZFKV5hmoIhUy6bYKovIKhGJEpE7vNrnZfQeIvKYiDyQHe+f07Jz25nAYInE5BddAJ8SiY8GAtm1M7wXTzG9DsBzACJyO5479tO901hVx6vq51l947Sb5nLYQLJv25kAYInEBLqCIjLReb7CYhEpDiAidUXkO6eg5EoRaeS03y4ivzrF8paIyDVOAbvHgH86z4a4pICeiFR0lr1BRP6DU4Po8iMiEfmXeJ6PcTcQBkx1ltdLROZ4TXeziMzGd0lAcTzlvFOdkhv/AN7KaAYnjn85w8tEZIyIrBWR7WnrJyIFRWSseJ4pEyEiTznte0TkJRFZBdwjIt1FZLWI/CYiM5xaTWnTve6MCxeRViLyvYjsFJHHvGJ5TkTWOe/xste223r5Z5fOtiv+J7aTCVCWSEygqw98pKpNgVN47hgGmAA8paqtgX8BHzvtq4D26imW9xXwvKruAcYD76hqC1Vdedl7jARWOfPMB2pmFpCqzgTC8dSmagEsBBqLSGVnkgeBT//EOn4J9AC+w/P8jb8Dn6tXyRIfFFLVtngS0EinbTCe50y0VNVQ/leQESBBVa8HlgDDgW7qKdAZjqfIYJp9qtoBWInnDu67gfbAvwFEpDuez6gtnsKKreV/xT3/8Nldvu1U9fyfWEcToAq5HYAxV7BbVTc6w+uBYOcb83XADE95IcDzbR48hee+dmo0FQF2+/AenfEU3UNVvxWRk38mQFVVEfkCuE9EPsVzisrn/gtVjQN6AYinTPoQoK+ITATKA2+r6uorLCbtCGg9nocqgacG1Hh1njeiqt7P0kgrMNgezwOOfna2ZRHA+73mOz8jgVLqec5FvIgkiOdpit2d1wZnulJ4Eshe0vnsrrAOJpeyRGICXaLXcAqeU0AFgFPO0cDlPgDGqep8EemC5xu+L9KrFZTMpUftxTKZ/1PgGyABmKH/e1gUACLSDviP8+tLqjqf9L0EvIan32Q9nqOVecCNV4g/bTul8L//ayHjsuBnvab5QVXvvcJyU7n0s0h13keAN1T1P94zOacT0/vsTB5kp7ZMrqOeZyzsFpF7wFP1VESaO6PLAvud4QFes8XjefxoelYA/Z1l3YLnKADgMFDF6UMpiqfUerrLczrFD+A5TTQlnZh/dU7ltMgoiYhIfaCaqi7HU5AyFU8iyCyBZWYx8JjT54KIVEhnmjVARxGp50xTQkT+TLnz74FBXv0q1UXkSg87y+yzMLmQJRKTW/UHHhKRtOrEfZz2UXhOea0EjnlN/w1wZ3qd7cDLQGcR+Q3PaZq9AKqahKcv4FdgARDtNc8UYPxlHcZT8fQpbLnKdXoNTyICT6XZgXh29GOvcnn/xbMuEc52+tvlE6jqUed9polIhPN+jXx9A1VdjOeoabWIRAIzuXKSmMIft53Jxaz6rzHZREQ+BDao6iS3YzEmJ1kiMSYbiMh6PP0ON6tq4pWmNyYvsURijDEmS6yPxBhjTJZYIjHGGJMllkiMMcZkiSUSY4wxWWKJxBhjTJb8f4OQ6E96SoeeAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA3jElEQVR4nO3dd3gVdfb48feh9w4KBAi9hdBCE0EUBBQFRd3FRQVRUde263cVUBBcGyhiVxYWRP0hSgcRFFGqghAEkgABQhFCryGUhJTz++NO2Asm4UpyMzfJeT3PfTL5TLln5iZz7sxn5oyoKsYYY8zVKuB2AMYYY3I3SyTGGGOyxBKJMcaYLLFEYowxJksskRhjjMmSQm4HkNMqVaqkwcHBbodhjDG5yvr164+pauX0xuW7RBIcHEx4eLjbYRhjTK4iIr9nNM5ObRljjMkSSyTGGGOyxBKJMcaYLMl3fSTpSUpKIjY2loSEBLdDMeaKihUrRlBQEIULF3Y7FGMASyQAxMbGUrp0aYKDgxERt8MxJkOqyvHjx4mNjaV27dpuh2MMYKe2AEhISKBixYqWREzAExEqVqxoR88moFgicVgSMbmF/a2aQGOJxBhj8rjzF1J4Y9FWYk+e88vyrY/EGGPysF92HmPorEj2njhHUPkS3N++Vra/hx2RBIj333+fxo0b079//ywva+DAgcycOTNLy5g7dy5btmzJciwbNmzg4YcfznD8nj17+PLLL7P8PleyYMECRo4cme64xMREunXrRosWLfj666/p0qVLjlU/yK7tbMzl4s4nMWx2BH+b+CsFBL4a3N4vSQQskQSMjz/+mIULFzJ16lS3QwGubgeXnJz8h7bXX3+dp556KsN5ciqR9OrVi/nz53Pu3B8P7Tds2EBSUhIbN27kr3/9a7a/d0pKSobjLJEYf/hhy2G6v7Ocr9ft49Eb6vDdPzrTvk5Fv72f305tichk4DbgiKqGeLU/BTwJJAPfqurzTvsw4CEgBXhaVb932lsDU4DiwELgGVVVESkKfA60Bo4Df1XVPVmN++VvNrPlwOmsLuYSTaqVYeTtTTMc/9hjj7Fr1y569+7NoEGDGDx4ME899RSRkZEkJyczatQo+vTpQ0pKCkOHDmXZsmUkJibyxBNP8Oijj6KqPPXUU/z000/Url2btMcnr127ltGjRzN79mzmzZtHv379iIuLIzU1lSZNmrBr1y4mTpzIhAkTuHDhAvXq1eOLL75g48aNzJ8/n+XLl/Pqq68ya9YsAJ544gmOHj1KiRIlmDhxIo0aNWLgwIFUqFCBDRs20KpVK95+++2L6xUfH09ERATNmzcHYPny5TzzzDOAp8N4xYoVDB06lK1bt9KiRQsGDBjA008/ne46njlzhj59+nDy5EmSkpJ49dVX6dOnD3v27KFnz55cf/31rFmzhubNm/Pggw8ycuRIjhw5wtSpU2nbti0iQpcuXViwYAF/+ctfLsZ45MgR7rvvPo4ePUqLFi0urmuaadOm8frrr6Oq9OrVizFjxjB9+nTWrFnDuHHjeO+993jvvffYtWsXO3fuZMCAAaxatYrg4GAGDRrE4sWLefLJJ4mPj8/SdjbGF8fOJDJq/mYWRByk0bWlmfhAGKFB5fz+vv7sI5kCfIhnZw+AiNwI9AFCVTVRRKo47U2AfkBToBqwREQaqGoK8AkwGFiDJ5H0BBbhSTonVbWeiPQDxgDZ/3UyB4wfP57vvvuOpUuXUqlSJV544QVuuukmJk+ezKlTp2jbti3dunVj6tSplC1blnXr1pGYmEjHjh3p3r07GzZsYNu2bURGRnL48GGaNGnCoEGDaNWqFRs2bABg5cqVhISEsG7dOpKTk2nXrh0Affv25ZFHHgFg+PDhTJo0iaeeeorevXtz2223cffddwPQtWtXxo8fT/369fn111/5+9//zk8//QTA9u3bWbJkCQULFrxkvcLDwwkJufgdgrFjx/LRRx/RsWNHzpw5Q7FixRg9ejRjx45lwYIFAEyYMCHddaxRowZz5syhTJkyHDt2jPbt29O7d28AYmJimDFjBhMmTKBNmzZ8+eWXrFq1ivnz5/P6668zd+5cAMLCwli5cuUliaRKlSr897//vSSGNAcOHGDIkCGsX7+e8uXL0717d+bOnUvnzp156623Lm7XihUrsn//flatWkWnTp0uzl+sWDFWrVoFwPHjx7O8nY3JiKoyb+MBXv5mM2cTU/i/mxvw6A11KVIoZ046+S2RqOoKEQm+rPlxYLSqJjrTHHHa+wBfOe27RSQGaCsie4AyqroaQEQ+B+7Ak0j6AKOc+WcCH4qIaNrX8auU2ZFDTlm8eDHz589n7NixgOc+l71797J48WIiIiIu9n/ExcWxY8cOVqxYwb333kvBggWpVq0aN910EwCFChWiXr16bN26lbVr1/Lss8+yYsUKUlJSLu7woqKiGD58OKdOneLMmTP06NHjD/GcOXOGX375hXvuuediW2Ji4sXhe+655w9JBODgwYNUrvy/qtMdO3bk2WefpX///vTt25egoKB01z29dQwKCuKFF15gxYoVFChQgP3793P48GEAateuTbNmzQBo2rQpXbt2RURo1qwZe/bsubjsKlWqcODAAR8+AY9169bRpUuXi+vQv39/VqxYwR133MGZM2eIj49n3759/O1vf2PFihWsXLmSvn37Xpzf+zRZdmxnY9Jz4NR5hs+N4qfoI7SsWY437wql/jWlczSGnL5qqwHQSUReAxKAf6nqOqA6niOONLFOW5IzfHk7zs99AKqaLCJxQEXg2OVvKiKD8RzVULNmzexcH79QVWbNmkXDhg3/0P7BBx/8YSe0cOHCDO8t6NSpE4sWLaJw4cJ069aNgQMHkpKScjFJDRw4kLlz59K8eXOmTJnCsmXL/rCM1NRUypUrx8aNG9N9j5IlS6bbXrx48UtunBs6dCi9evVi4cKFtG/fniVLlqS77umt45QpUzh69Cjr16+ncOHCBAcHX1x20aJFL05XoECBi78XKFDgkn6bhIQEihcvnm6s6cnsO0mHDh349NNPadiwIZ06dWLy5MmsXr36klN73tslO7azMd5SU5Uv1+5l9KJoUlKVl25rwoDrgilYIOfvM8rpzvZCQHmgPfAcMF08e8D01lwzaecK4y5tVJ2gqmGqGub9DTlQ9ejRgw8++ODijizt9FSPHj345JNPSEpKAjynlM6ePUvnzp356quvSElJ4eDBgyxduvTisjp37sy7775Lhw4dqFy5MsePHyc6OpqmTT1HXvHx8VStWpWkpKRLOvpLly5NfHw8AGXKlKF27drMmDED8OxgN23adMX1aNy4MTExMRd/37lzJ82aNWPIkCGEhYURHR19yftkto5xcXFUqVKFwoULs3TpUn7/PcNHI2Ro+/btl5xqu5J27dqxfPlyjh07RkpKCtOmTeOGG24APNt17NixdO7cmZYtW7J06VKKFi1K2bJl012WP7ezyX92HztLv4lrGD43ihY1yrH4n50ZdH1tV5II5HwiiQVmq8daIBWo5LTX8JouCDjgtAel0473PCJSCCgLnPBr9DlkxIgRJCUlERoaSkhICCNGjADg4YcfpkmTJrRq1YqQkBAeffRRkpOTufPOO6lfvz7NmjXj8ccfv7izA8/O8PDhw3Tu3BmA0NBQQkNDLx7BvPLKK7Rr146bb775kk7dfv368dZbb9GyZUt27tzJ1KlTmTRpEs2bN6dp06bMmzfviuvRqFEj4uLiLu4o3333XUJCQmjevDnFixfnlltuITQ0lEKFCtG8eXPeeeedDNexf//+hIeHExYWxtSpU6+qA3rp0qX06tXL5+mrVq3KG2+8wY033kjz5s1p1aoVffr0ATxHevv27aNz584ULFiQGjVqcP3112e4LH9uZ5N/JKekMn75Tnq+u4Log6d58+5QvnioLTUqlHA3MFX12wsIBqK8fn8M+Lcz3ADPqSnB08m+CSgK1AZ2AQWd6dbhOYIRPH0jtzrtTwDjneF+wHRfYmrdurVebsuWLX9oM9lj3LhxOnHiRLfD0EOHDulNN93kdhjZxv5m858tB+L0tvdXaq0hC3Tw5+v0cNz5HH1/IFwz2K/68/LfaUAXoJKIxAIjgcnAZBGJAi4AA5wAN4vIdGALnsuCn1DPFVvg6aCfgufy30XOC2AS8IXTMX/CSSYmwDz++OMXT9W4ae/evZf0XxiTWyQmp/DhTzF8smwn5UoU5uP+rbgl5NqAqrkmmrWLnHKdsLAwvfyu5a1bt9KoUaOA+mCMyYiqEh0dTePGjd0OxfjZ+t9PMmRWBDFHztC3ZXVG3NaE8iWLuBKLiKxX1bD0xlmtLTzX+x8/ftxKyZuAp87zSIoVK+Z2KMaPziYmM3bxNqb8sodqZYsz5cE2dGlYxe2wMmSJBAgKCiI2NpajR4+6HYoxV5T2hESTN63ccZRhsyOJPXmeAR1q8VzPRpQqGti76sCOLocULlzYnjZnjHFV3LkkXlu4henhsdSpXJIZj3WgTXAFt8PyiSUSY4xx2XdRhxgxL4oTZy/w9y51ebprfYoV/mO1iEBlicQYY1xyJD6BUfM3szDyEE2qluHTgW0IqZ7+Ta2BzBKJMcbkMFVl1m/7eWXBFs4npfBcj4YM7lyHwgVz55M9LJEYY0wOij15jhfmRLFi+1Fa1yrPmLtCqVellNthZYklEmOMyQGpqcoXa35nzHfRALzcuyn3t69FAZfqY2UnSyTGGONnO4+eYcjMCMJ/P0nnBpV5/c4Qgsq7XB8rG1kiMcYYP0lKSWXCil289+MOihcuyNh7mnNXq+p57sZnSyTGGOMHUfvjeH5mBFsOnubWZtcyqndTqpTOmxUJLJEYY0w2SkhK4b0fdzBhxS7KlyjC+Pta0TOkqtth+ZUlEmOMySbr9pxgyMwIdh07yz2tgxjeqwllSxR2Oyy/s0RijDFZdCYxmTe/i+bz1b9TvVxxPh/Uls4NAv9prNnFEokxxmTB8u1HeWF2JAfizjPwumCe69GQkgFeZDG75a+1NcaYbHLq3AX+vWALs3/bT93KJZnxaAfCckmRxexmicQYY/6khZEHeWleFCfPJfHkjfV48qZ6uarIYnazRGKMMT46cjqBEfOi+H7zYZpWK8Nng9rStFruK7KY3SyRGGPMFagqM9bH8uqCLSQkpzKkZyMe6VSbQrm0yGJ2s0RijDGZ2HfiHMNmR7Iq5hhtgysw+q5m1Kmcu4ssZjdLJMYYk46UVOXz1Xt487ttFBB4pU9T+rfLG0UWs5slEmOMuUzMkXienxnBb3tPcUODyrzetxnVyxV3O6yAZYnEGGMcSSmp/Gf5Tt7/MYYSRQsy7i/NubNl3iuymN0skRhjDBAZG8dzMzcRfSieXqFVGXV7UyqXLup2WLmCJRJjTL6WkJTCu0t2MHHlLiqULMJ/7m9Nj6bXuh1WrmKJxBiTb/266zhDZ0ey+9hZ/hpWgxdubZwviixmN0skxph8Jz4hiTHfRfP/1uylRoXiTH24HR3rVXI7rFzLEokxJl9ZGn2EF+dEcvB0AoM61uZfPRpQoojtCrPCtp4xJl84cfYCryzYwpwN+6lfpRSzHr+OVjXLux1WnuC3+/tFZLKIHBGRqHTG/UtEVEQqebUNE5EYEdkmIj282luLSKQz7n1xrsMTkaIi8rXT/quIBPtrXYwxuZeqsiDiADePW843mw7w9E31WPD09ZZEspE/C8VMAXpe3igiNYCbgb1ebU2AfkBTZ56PRSStlOYnwGCgvvNKW+ZDwElVrQe8A4zxy1oYY3Ktw6cTGPzFep78cgPVyxfnm6eu59nuDSlaKP9W6vUHvyUSVV0BnEhn1DvA84B6tfUBvlLVRFXdDcQAbUWkKlBGVVerqgKfA3d4zfOZMzwT6Cp215AxBs9RyNfr9tJt3HJWbD/KC7c2Yvbj19G4ahm3Q8uTcrSPRER6A/tVddNl+/zqwBqv32OdtiRn+PL2tHn2AahqsojEARWBY+m872A8RzXUrFkzW9bFGBOY9h4/x9DZEfyy8zjtaldgzF2hBFcq6XZYeVqOJRIRKQG8CHRPb3Q6bZpJe2bz/LFRdQIwASAsLCzdaYwxuVtKqvLpz7sZu3gbhQoU4LU7Q7i3TU0rspgDcvKIpC5QG0g7GgkCfhORtniONGp4TRsEHHDag9Jpx2ueWBEpBJQl/VNpxpg8bvthT5HFjftOcVOjKrx2ZwhVy1qRxZySY4lEVSOBKmm/i8geIExVj4nIfOBLERkHVMPTqb5WVVNEJF5E2gO/Ag8AHziLmA8MAFYDdwM/Of0oxph84kJyKp8s28mHS3dQqmgh3uvXgt7Nq1mRxRzmt0QiItOALkAlEYkFRqrqpPSmVdXNIjId2AIkA0+oaooz+nE8V4AVBxY5L4BJwBciEoPnSKSfn1bFGBOANu07xZBZEUQfiqd382qMvL0JFUtZkUU3SH77Eh8WFqbh4eFuh2GMuUrnL6TwzpLt/HflLqqULsard4TQrck1boeV54nIelUNS2+c3dlujMk1Vu88zrDZEew5fo5729Zk2K2NKFPMiiy6zRKJMSbgnU5IYvSiaL78dS+1Kpbgy0facV1dK7IYKCyRGGMC2o9bD/PinCiOxCfwSKfaPHtzQ4oXsTvTA4klEmNMQDp+JpGXv9nC/E0HaHhNacbf35oWNcq5HZZJhyUSY0xAUVXmbzrAy99sIT4hiX92a8DjXepSpJA/SwOarLBEYowJGAfjzjN8ThQ/Rh+heY1yvHlXKA2vLe12WOYKLJEYY1yXmqpMW7eXNxZGk5yayvBejXmwY20KWnmTXMESiTHGVXuOnWXo7AjW7DpBhzoVGX1XM2pVtCKLuYklEmOMK5JTUpn8827eXrydIgULMLpvM/7apoaVN8mFLJEYY3Jc9KHTDJkZwabYOLo1voZX7wjh2rLF3A7LXCVLJMaYHJOYnMJHS3fy8dIYyhYvzAf3tuS20Kp2FJLLWSIxxuSI3/aeZMjMCHYcOcOdLasz4rYmVChZxO2wTDawRGKM8atzF5J5e/F2Jv+8m2vLFGPywDBuamRFFvMSSyTGGL/5OeYYQ2dHsO/Eefq3q8nQWxpR2oos5jmWSIwx2S7ufBJvLNzKV+v2UbtSSb4a3J72dSq6HZbxkysmEhG5B/hOVeNFZDjQCnhVVX/ze3TGmFxn8eZDDJ8bxbEziTx6Qx3+2a0BxQpbkcW8zJcjkhGqOkNErgd6AGOBT4B2fo3MGJOrHDuTyKj5m1kQcZBG15bmvwPCCA0q53ZYJgf4kkjSHnnbC/hEVeeJyCj/hWSMyU1Ulbkb9/PyN1s4l5jC/93cgMe61KVwQSuymF/4kkj2i8h/gG7AGBEpCthfiDGGA6fO8+KcSJZuO0qrmuUYc1co9a+xIov5jS+J5C9AT2Csqp4SkarAc/4NyxgTyFJTlalr9zJmUTQpqcrI25vwQIdgK7KYT2WYSEQkHPgZWAQsVNUEAFU9CBzMmfCMMYFm97GzDJkVwdrdJ7i+XiXe6NuMGhVKuB2WcVFmRyTtgevxHI28LCLHge+BRaq6PSeCM8YEjuSUVP67ajfv/LCdooUK8ObdodzTOsjKm5iME4mqJgPLnBfOKa1bgFdFpD6wWlX/ngMxGmNctuXAaYbMiiByfxw9ml7DK31CqFLGiiwaD59vSHROaU0GJotIAaCD36IyxgSExOQUPvwphk+W7aRcicJ83L8Vt4Rca0ch5hKZ9ZF8A2hG41W1t18iMsYEhPW/n2TIrAhijpzhrlZBjLitMeVKWJFF80eZHZGMzbEojDEB42xiMmMXb2PKL3uoVrY4nw1qyw0NKrsdlglgmfWRLE8bFpEiQAPn122qmuTvwIwxOW/ljqMMmx1J7MnzDOhQi+d6NqJUUSvJZzLnS62tLsBnwB5AgBoiMkBVV/g1MmNMjok7l8Sr325hxvpY6lQuyYzHOtAmuILbYZlcwpevGm8D3VV1G4CINACmAa39GZgxJmd8F3WQEfM2c+LsBf7epS5Pd61vRRbNn+JLIimclkQAVHW7iNgDBYzJ5Y7EJzBy3mYWRR2iSdUyfDqwDSHVy7odlsmFfKmZFS4ik0Ski/OaCKy/0kwiMllEjohIlFfbWyISLSIRIjJHRMp5jRsmIjEisk1Eeni1txaRSGfc++JcdygiRUXka6f9VxEJ/jMrbkx+parMXB/LzeNW8GP0EZ7r0ZB5T3a0JGKumi+J5HFgM/A08AywBXjMh/mm4Lkr3tsPQIiqhgLbgWEAItIE6Ac0deb5WETSjq0/AQYD9Z1X2jIfAk6qaj3gHWCMDzEZk6/FnjzHgE/X8a8Zm6hfpRQLn+7EEzfWs0q9JkuueGpLVROBcc7LZ6q64vKjBFVd7PXrGuBuZ7gP8JXzXrtFJAZoKyJ7gDKquhpARD4H7sBT/6sPMMqZfybwoYiIqmZ474sx+VVqqvLFmt8Z8100AC/3bsr97WtRwIosmmzgy1VbtwGvALWc6QVQVS2TxfceBHztDFfHk1jSxDptSc7w5e1p8+zDE0yyiMQBFYFj6azDYDxHNdSsWTOLYRuTu8QcOcPQWRGE/36Szg0q8/qdIQSVtyKLJvv40tn+LtAXiMyub/si8iKQDExNa0pnMs2kPbN5/tioOgGYABAWFmZHLCZfSEpJZcKKXby3ZAfFixTk7Xua07dVdStvYrKdL4lkHxCVjUlkAHAb0NVrmbFADa/JgoADTntQOu3e88SKSCGgLHAiO2I0JreL2h/H8zMj2HLwNLc2u5aXe4dQuXRRt8MyeZQvieR5YKGILAcS0xpV9U/1mQCISE9gCHCDqp7zGjUf+FJExgHV8HSqr1XVFBGJF5H2wK/AA8AHXvMMAFbj6Wv5yfpHTH6XkJTCez/uYMKKXVQoWYTx97WiZ0hVt8MyeZwvieQ14AxQDPC5YpuITAO6AJVEJBYYiecqraLAD87h9RpVfUxVN4vIdDxXhCUDT6hq2rPiH8dzBVhxPJ3si5z2ScAXTsf8CTxXfRmTb63bc4IhMyPYdews97QOYnivJpQtYbd8Gf+TK32JF5FwVQ3LoXj8LiwsTMPDw90Ow5hscyYxmTe/i+bz1b8TVL44b/RtRqf6VmTRZC8RWZ9RLvDliGSJiHS/7NJdY0wAWLbtCC/OieJA3HkGXhfMcz0aUtKKLJoc5stf3BPA8yKSiOdy3Oy6/NcYc5VOnr3AK99uYfZv+6lbuSQzH+tA61pWZNG4w5cbEkvnRCDGmCtTVRZFHeKleVGcOpfEkzfW48mb6lmRReMqOwY2Jpc4cjqBEfOi+H7zYUKql+GzQW1pWs3qYxn3WSIxJsCpKjPWx/Lqgi0kJKcypGcjHulUm0JWH8sECEskxgSwfSfOMWx2JKtijtE2uAKj72pGncql3A7LmEv4lEhE5Hqgvqp+KiKVgVKqutu/oRmTf6WkKp/9soe3vt9GAYFX7gihf9uaVmTRBCRfijaOBMKAhsCnQGHg/wEd/RuaMfnTjsPxDJkVwW97T9GlYWVeu7MZ1csVdzssYzLkyxHJnUBL4DcAVT0gInYllzHZLCkllfHLdvLBTzGUKFqQd/7anDtaWJFFE/h8SSQXVFVFRAFEpKSfYzIm34mMjeO5mZuIPhTPbaFVGdW7KZVKWZFFkzv4kkimi8h/gHIi8gie54j8179hGZM/JCSl8M6S7UxcsYtKpYoy4f7WdG96rdthGfOn+HJD4lgRuRk4jaef5CVV/cHvkRmTx63ZdZxhsyPZfews/drUYNitjSlb3IosmtzHl872Mao6BM/z1i9vM8b8SfEJSYxeFM3UX/dSo0Jxpj7cjo71KrkdljFXzZdTWzfjeYaIt1vSaTPGXMHS6CO8MCeSw6cTePj62jzbvQElitjtXCZ3y/AvWEQeB/4O1BGRCK9RpYGf/R2YMXnJibMX+Pc3m5m78QD1q5Ti48evo2XN8m6HZUy2yOyr0Jd4HiL1BjDUqz1eVe2Rtsb4QFVZEHGQUfM3E3c+iae71ueJG+tStJAVWTR5R4aJRFXjgDjgXgARqYLnKYmlRKSUqu7NmRCNyZ0OxSUwfG4US7YeJjSoLFMfaUeja+3pCybv8aWz/XYg7VnqR4BawFagqX9DMyZ3UlW+WreP17/dSlJqKi/e2pgHOwZbkUWTZ/nSy/cq0B5YoqotReRGnKMUY8ylfj9+lqGzIlm96zjt61RgdN9QgivZPbwmb/MlkSSp6nERKSAiBVR1qYiM8XtkxuQiKanKpz/vZuzibRQuUIDX72xGvzY1rMiiyRd8SSSnRKQUsAKYKiJHgGT/hmVM7rHtUDzPz4pg075TdG1UhVfvDKFqWSuyaPIPXxJJH+A88E+gP1AW+Lc/gzImN7iQnMrHy2L4aGkMpYsV5r1+LejdvJoVWTT5TqaJREQKAvNUtRuQCnyWI1EZE+A27jvFkJkRbDscT58W1XjptiZUtCKLJp/KNJGoaoqInBORss7lwMbka+cvpDDuh21MWrWbKqWLMWlAGF0bX+N2WMa4ypdTWwlApIj8AJxNa1TVp/0WlTEB6Jedxxg6K5K9J87xt3Y1GXpLI8oUsyKLxviSSL51XsbkS6cTknhjYTTT1u6lVsUSTHukPR3qVnQ7LGMChi+JZB+wRlXP+TsYYwLNki2HeXFuJEfjExncuQ7/7NaA4kWsvIkx3nxJJAOB8SJyHFjpvFap6kl/BmaMm46fSeTlb7Ywf9MBGl1bmgn3h9G8Rjm3wzImIPnyYKsHAESkGnA38BGecilW+9rkOarK/E0HGDV/M2cSk3n25gY8dkNdihSy8ibGZOSK/x0icp/zqN2ZQDfgQ6CTD/NNFpEjIhLl1VZBRH4QkR3Oz/Je44aJSIyIbBORHl7trUUk0hn3vjgX6YtIURH52mn/VUSC/9SaG3OZg3HnefizcJ75aiO1Kpbk26c78XTX+pZEjLkCX/5D3gVaABOBp1X1TVVd7cN8U4Cel7UNBX5U1frAj87viEgToB+eQpA9gY+de1gAPgEGA/WdV9oyHwJOqmo94B3AyraYq5Kaqkz99XduHreCX3YeZ8RtTZj1+HU0uKa026EZkytcMZGoaiVgEJ4S8q+JyFoR+cKH+VYAlz+3pA//u6nxM+AOr/avVDVRVXcDMUBbEakKlFHV1aqqwOeXzZO2rJlA17SjFWN8tfvYWe6duIYX50TRvEZZvv9HZx66vjYFrUaWMT7zpYx8GaAmnvLxwXhKpKRe5ftdo6oHAVT1oPOME4DqwBqv6WKdtiRn+PL2tHn2OctKFpE4oCJwLJ11GIznqIaaNWteZegmL0lOSWXyz7t5e/F2ihQqwJi7mvGXsBpW3sSYq+BLh/kqr9eHqhp7hemvRnr/vZpJe2bz/LFRdQIwASAsLCzdaUz+sfXgaYbMiiAiNo6bm1zDq3eEcE2ZYm6HZUyu5ctVW6EAIlKaDHbUf8JhEanqHI1UxfOgLPAcadTwmi4IOOC0B6XT7j1PrIgUwnOkZI8ANhlKTE7ho6U7+XhpDOVKFOajv7Xi1mbX2lGIMVnky1VbISKyAYgCtojIehEJucr3mw8McIYHAPO82vs5V2LVxtOpvtY5DRYvIu2d/o8HLpsnbVl3Az85/SjG/MFve09y2/ureP/HHfRuXo0f/nkDvUKrWhIxJhv4cmprAvCsqi4FEJEuTtt1mc0kItOALkAlEYkFRgKjgeki8hCwF7gHQFU3i8h0YAueZ508oaopzqIex3MFWHFgkfMCmAR8ISIxeI5E+vmwLiafOXchmbcXb2fyz7upWqYYnz7YhhsbVrnyjMYYn8mVvsSLyCZVbX6lttwiLCxMw8PD3Q7D5ICfY44xdHYE+06c5772NRnSsxGlrciiMVdFRNaralh643w5ItklIiOAtEt+7wN2Z1dwxmS3uPNJvP7tVr4O30ftSiX5enB72tWxIovG+IsviWQQ8DIwG8+VUiuAB/0ZlDFXa/HmQwyfG8Xxsxd47Ia6/KNbfYoVtiKLxviTL1dtnQTs2SMmoB2NT2TUN5v5NuIgjauWYdKANjQLKut2WMbkCxkmEhH5hkwu91XV3n6JyJg/QVWZs2E//16whXOJKTzXoyGDO9ehcEGrj2VMTsnsiGRsjkVhzFXYf+o8L86JZNm2o7SqWY437w6lXhWrj2VMTssskexW1b05FokxPkorsjh6UTQKjLq9Cfd3CLb6WMa4JLNEMhdoBSAis1T1rhyJyJhM7Dp6hqGzIlm75wSd6lfi9TubUaNCCbfDMiZfyyyReH+9q+PvQIzJTHJKKhNX7uadJdspVqgAb90dyt2tg+zOdGMCQGaJRDMYNiZHbT4Qx5BZEUTtP03Pptfy7z5NqWJFFo0JGJklkuYichrPkUlxZxjnd1XVMn6PzuRrCUkpfPDTDsYv30X5EkX4uH8rbm1W1e2wjDGXyTCRqKrdxWVcs/73Ezw/M4KdR89yV6sgRtzWmHIlirgdljEmHb7c2W5MjjmbmMxb32/js9V7qFa2OJ8NassNDSq7HZYxJhOWSEzAWLH9KMNmR3Ig7jwPtK/Fcz0bUaqo/YkaE+jsv9S47tS5C7z67VZmro+lTuWSTH+0A22CK7gdljHGR5ZIjKsWRR5kxLzNnDx3gb93qcvTXa3IojG5jSUS44oj8QmMnLeZRVGHaFK1DFMebENIdSuyaExuZInE5ChVZeb6WF79divnk6zIojF5gSUSk2P2nTjHC3MiWbnjGGG1yjP6rlDqVSnldljGmCyyRGL8LjVV+Xz1Ht78fhsAL/duyv3ta1HAiiwakydYIjF+FXMkniGzIln/+0k61a/EG32bEVTeiiwak5dYIjF+kZSSyoQVu3hvyQ6KFynI2/c0p2+r6lZk0Zg8yBKJyXZR++N4fmYEWw6e5tZm1/Jy7xAqly7qdljGGD+xRGKyTUJSCu/9uIMJK3ZRoWQRxt/Xip4hVmTRmLzOEonJFuv2nGDIzAh2HTvLX8KCePHWJpQtUdjtsIwxOcASicmSM4nJvPldNJ+v/p2g8sX5fw+14/r6ldwOyxiTgyyRmKu2bNsRXpwTxYG48zzYMZh/dW9ISSuyaEy+Y//15k87efYCr3y7hdm/7adelVLMfOw6Wtcq73ZYxhiXWCIxPlNVFkUd4qV5UZw6l8TTN9XjiZvqUbSQFVk0Jj+zRGJ8cuR0AiPmRfH95sM0q16Wzwe1o0k1e9qyMQZcqZQnIv8Ukc0iEiUi00SkmIhUEJEfRGSH87O81/TDRCRGRLaJSA+v9tYiEumMe1/sbrdsp6pMX7ePruOWs2zbUYbd0og5f7/Okogx5qIcTyQiUh14GghT1RCgINAPGAr8qKr1gR+d3xGRJs74pkBP4GMRSTuX8gkwGKjvvHrm4KrkeftOnOP+SWt5flYEjauW4bt/dObRG+pSyCr1GmO8uHVqqxBQXESSgBLAAWAY0MUZ/xmwDBgC9AG+UtVEYLeIxABtRWQPUEZVVwOIyOfAHcCiHFuLPColVfnslz289f02ChYQXr0jhL+1rWlFFo0x6crxRKKq+0VkLLAXOA8sVtXFInKNqh50pjkoIlWcWaoDa7wWEeu0JTnDl7f/gYgMxnPkQs2aNbNzdfKcHYfjeX5WBBv2nuLGhpV57c5mVCtX3O2wjDEBLMcTidP30QeoDZwCZojIfZnNkk6bZtL+x0bVCcAEgLCwsHSnye8uJKcyfvlOPvwphpJFC/LuX1vQp0U1K7JojLkiN05tdQN2q+pRABGZDVwHHBaRqs7RSFXgiDN9LFDDa/4gPKfCYp3hy9vNnxQRe4rnZ0YQfSie25tXY+TtTahUyoosGmN840av6V6gvYiUcK6y6gpsBeYDA5xpBgDznOH5QD8RKSoitfF0qq91ToPFi0h7ZzkPeM1jfJCQlMIbC7dyx0c/c/LcBSY+EMYH97a0JGKM+VPc6CP5VURmAr8BycAGPKedSgHTReQhPMnmHmf6zSIyHdjiTP+EqqY4i3scmAIUx9PJbh3tPlqz6zhDZ0Ww5/g57m1bg2G3NqZMMSuyaIz580Q1f3UZhIWFaXh4uNthuCY+IYnRi6KZ+utealYowei+zbiunhVZNMZkTkTWq2pYeuPszvZ85Kfow7w4J4rDpxN4+Pra/F/3hhQvYuVNjDFZY4kkHzhx9gL//mYzczceoME1pfi4/3W0rGlFFo0x2cMSSR6mqnwTcZBR8zcTn5DEM13r88SN9ShSyO5MN8ZkH0skedShuASGz41iydbDNK9RjjfvCqXhtaXdDssYkwdZIsljVJWv1u3j9W+3kpSayvBejXmwY20KWnkTY4yfWCLJQ34/fpahsyJZves4HepUZPRdzahVsaTbYRlj8jhLJHlASqry6c+7Gbt4G4ULFOCNvs3o16aGlTcxxuQISyS53LZDniKLm/adolvjKrx6RzOuLVvM7bCMMfmIJZJc6kJyKh8vi+GjpTGULlaY9+9tye2hVe0oxBiT4yyR5EIb951iyMwIth2Op0+Laoy8vSkVShZxOyxjTD5liSQXOX8hhXE/bGPSqt1UKV2MSQPC6Nr4GrfDMsbkc5ZIcolfdh5j6KxI9p44R/92NRlySyMrsmiMCQiWSALc6YQk3lgYzbS1e6lVsQTTHmlPh7oV3Q7LGGMuskQSwJZsOcyLcyM5Gp/Io53r8I9uDazIojEm4FgiCUDHzyQy6pstfLPpAI2uLc3EB8IIDSrndljGGJMuSyQBRFWZv+kAo+Zv5kxiMs/e3IDHbqhrRRaNMQHNEkmAOHDqPMPnRvFT9BFa1izHmLtCaXCNFVk0xgQ+SyQuS01Vpq3byxsLo0lJVV66rQkDrgu2IovGmFzDEomLdh87y9BZEfy6+wQd61XkjTtDqVmxhNthGWPMn2KJxAXJKalMWrWbcT9sp0ihArx5Vyj3hAVZeRNjTK5kiSSHbT14miGzIoiIjaN7k2t45Y4QriljRRaNMbmXJZIckpicwkc/xfDxsp2UK1GYj/7WilubXWtHIcaYXM8SSQ74be9JhsyMYMeRM/RtWZ0RtzWhvBVZNMbkEZZI/OjchWTGfr+dT3/ZTdUyxfj0wTbc2LCK22EZY0y2skTiJ6t2HGPYnAj2nTjPAx1q8XzPRpQqapvbGJP32J4tm8WdT+K1b7cwPTyW2pVKMv3RDrStXcHtsIwxxm8skWSj7zcfYsTcKI6fvcDjXeryTNf6FCtsRRaNMXmbJZJscDQ+kVHzN/Nt5EEaVy3DpAFtaBZU1u2wjDEmR1giyQJVZc6G/fx7wRbOJabwXI+GDO5ch8IFrciiMSb/cGWPJyLlRGSmiESLyFYR6SAiFUTkBxHZ4fws7zX9MBGJEZFtItLDq721iEQ6496XHLwpY/+p8wz8dB3PTt9E3cqlWPhMJ564sZ4lEWNMvuPWXu894DtVbQQ0B7YCQ4EfVbU+8KPzOyLSBOgHNAV6Ah+LSFrHwyfAYKC+8+rp78BTU5XPV++h+7jlrNtzglG3N2HGox2oV6WUv9/aGGMCUo6f2hKRMkBnYCCAql4ALohIH6CLM9lnwDJgCNAH+EpVE4HdIhIDtBWRPUAZVV3tLPdz4A5gkb9i33n0DENnRbBuz0k61a/E63c2o0YFK7JojMnf3OgjqQMcBT4VkebAeuAZ4BpVPQigqgdFJO3OverAGq/5Y522JGf48na/mL5uH8PnRVGsUAHeujuUu1tbkUVjjAF3Tm0VAloBn6hqS+AszmmsDKS3t9ZM2v+4AJHBIhIuIuFHjx79s/ECULtySbo2qsKS/7uBe8JqWBIxxhiHG0cksUCsqv7q/D4TTyI5LCJVnaORqsARr+lreM0fBBxw2oPSaf8DVZ0ATAAICwtLN9lcSZvgCrQJthsLjTHmcjl+RKKqh4B9ItLQaeoKbAHmAwOctgHAPGd4PtBPRIqKSG08neprndNg8SLS3rla6wGveYwxxuQQt+4jeQqYKiJFgF3Ag3iS2nQReQjYC9wDoKqbRWQ6nmSTDDyhqinOch4HpgDF8XSy+62j3RhjTPpE9arO9ORaYWFhGh4e7nYYxhiTq4jIelUNS2+c3T1njDEmSyyRGGOMyRJLJMYYY7LEEokxxpgssURijDEmS/LdVVsichT43e04MlAJOOZ2EJmw+LIm0OODwI/R4suarMRXS1Urpzci3yWSQCYi4RldXhcILL6sCfT4IPBjtPiyxl/x2aktY4wxWWKJxBhjTJZYIgksE9wO4AosvqwJ9Pgg8GO0+LLGL/FZH4kxxpgssSMSY4wxWWKJxBhjTJZYInGJiNQQkaUislVENovIM077KBHZLyIbndetLsa4R0QinTjCnbYKIvKDiOxwfpZ3KbaGXttoo4icFpF/uLn9RGSyiBwRkSivtgy3l4gME5EYEdkmIj1ciu8tEYkWkQgRmSMi5Zz2YBE577Udx7sUX4afZ4Bsv6+9YtsjIhuddje2X0b7FP//DaqqvVx4AVWBVs5waWA70AQYBfzL7ficuPYAlS5rexMY6gwPBcYEQJwFgUNALTe3H9AZz2Oko660vZzPehNQFKgN7AQKuhBfd6CQMzzGK75g7+lc3H7pfp6Bsv0uG/828JKL2y+jfYrf/wbtiMQlqnpQVX9zhuOBrUB1d6PySR/gM2f4M+AO90K5qCuwU1VdrVigqiuAE5c1Z7S9+gBfqWqiqu4GYoC2OR2fqi5W1WTn1zVc+vjqHJXB9stIQGy/NM5TWv8CTPNnDJnJZJ/i979BSyQBQESCgZZA2nPsn3RONUx269SRQ4HFIrJeRAY7bdeo5zHHOD+ruBbd//Tj0n/gQNl+kPH2qg7s85ouFve/SAzi0qeM1haRDSKyXEQ6uRUU6X+egbb9OgGHVXWHV5tr2++yfYrf/wYtkbhMREoBs4B/qOpp4BOgLtACOIjncNktHVW1FXAL8ISIdHYxlnSJ53HNvYEZTlMgbb/MSDptrl2LLyIv4nmU9VSn6SBQU1VbAs8CX4pIGRdCy+jzDKjtB9zLpV9mXNt+6exTMpw0nbar2oaWSFwkIoXxfOBTVXU2gKoeVtUUVU0FJuLnw/XMqOoB5+cRYI4Ty2ERqQrg/DziVnyOW4DfVPUwBNb2c2S0vWKBGl7TBQEHcjg2AERkAHAb0F+dk+fO6Y7jzvB6POfPG+R0bJl8noG0/QoBfYGv09rc2n7p7VPIgb9BSyQucc6pTgK2quo4r/aqXpPdCURdPm9OEJGSIlI6bRhPp2wUMB8Y4Ew2AJjnRnxeLvkmGCjbz0tG22s+0E9EiopIbaA+sDangxORnsAQoLeqnvNqrywiBZ3hOk58u1yIL6PPMyC2n6MbEK2qsWkNbmy/jPYp5MTfYE5eVWCvS66wuB7PYWQEsNF53Qp8AUQ67fOBqi7FVwfPFR2bgM3Ai057ReBHYIfzs4KL27AEcBwo69Xm2vbDk9AOAkl4vu09lNn2Al7E8011G3CLS/HF4DlPnvY3ON6Z9i7nc98E/Abc7lJ8GX6egbD9nPYpwGOXTevG9ston+L3v0ErkWKMMSZL7NSWMcaYLLFEYowxJksskRhjjMkSSyTGGGOyxBKJMcaYLLFEYgKWU0E1W+4DEZEuInKdj9PuEZFKV5hmoIhUy6bYKovIKhGJEpE7vNrnZfQeIvKYiDyQHe+f07Jz25nAYInE5BddAJ8SiY8GAtm1M7wXTzG9DsBzACJyO5479tO901hVx6vq51l947Sb5nLYQLJv25kAYInEBLqCIjLReb7CYhEpDiAidUXkO6eg5EoRaeS03y4ivzrF8paIyDVOAbvHgH86z4a4pICeiFR0lr1BRP6DU4Po8iMiEfmXeJ6PcTcQBkx1ltdLROZ4TXeziMzGd0lAcTzlvFOdkhv/AN7KaAYnjn85w8tEZIyIrBWR7WnrJyIFRWSseJ4pEyEiTznte0TkJRFZBdwjIt1FZLWI/CYiM5xaTWnTve6MCxeRViLyvYjsFJHHvGJ5TkTWOe/xste223r5Z5fOtiv+J7aTCVCWSEygqw98pKpNgVN47hgGmAA8paqtgX8BHzvtq4D26imW9xXwvKruAcYD76hqC1Vdedl7jARWOfPMB2pmFpCqzgTC8dSmagEsBBqLSGVnkgeBT//EOn4J9AC+w/P8jb8Dn6tXyRIfFFLVtngS0EinbTCe50y0VNVQ/leQESBBVa8HlgDDgW7qKdAZjqfIYJp9qtoBWInnDu67gfbAvwFEpDuez6gtnsKKreV/xT3/8Nldvu1U9fyfWEcToAq5HYAxV7BbVTc6w+uBYOcb83XADE95IcDzbR48hee+dmo0FQF2+/AenfEU3UNVvxWRk38mQFVVEfkCuE9EPsVzisrn/gtVjQN6AYinTPoQoK+ITATKA2+r6uorLCbtCGg9nocqgacG1Hh1njeiqt7P0kgrMNgezwOOfna2ZRHA+73mOz8jgVLqec5FvIgkiOdpit2d1wZnulJ4Eshe0vnsrrAOJpeyRGICXaLXcAqeU0AFgFPO0cDlPgDGqep8EemC5xu+L9KrFZTMpUftxTKZ/1PgGyABmKH/e1gUACLSDviP8+tLqjqf9L0EvIan32Q9nqOVecCNV4g/bTul8L//ayHjsuBnvab5QVXvvcJyU7n0s0h13keAN1T1P94zOacT0/vsTB5kp7ZMrqOeZyzsFpF7wFP1VESaO6PLAvud4QFes8XjefxoelYA/Z1l3YLnKADgMFDF6UMpiqfUerrLczrFD+A5TTQlnZh/dU7ltMgoiYhIfaCaqi7HU5AyFU8iyCyBZWYx8JjT54KIVEhnmjVARxGp50xTQkT+TLnz74FBXv0q1UXkSg87y+yzMLmQJRKTW/UHHhKRtOrEfZz2UXhOea0EjnlN/w1wZ3qd7cDLQGcR+Q3PaZq9AKqahKcv4FdgARDtNc8UYPxlHcZT8fQpbLnKdXoNTyICT6XZgXh29GOvcnn/xbMuEc52+tvlE6jqUed9polIhPN+jXx9A1VdjOeoabWIRAIzuXKSmMIft53Jxaz6rzHZREQ+BDao6iS3YzEmJ1kiMSYbiMh6PP0ON6tq4pWmNyYvsURijDEmS6yPxBhjTJZYIjHGGJMllkiMMcZkiSUSY4wxWWKJxBhjTJb8f4OQ6E96SoeeAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1907,7 +1907,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEGCAYAAABYV4NmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA5CklEQVR4nO3dd3gV1dbA4d9KgdAChCJIC016Dx0CiAIWmoCCKCAoUu1+6pUrXNu9NkSkiTRBRGwooNJUWggldKQjKAGkhRI6gfX9cSZ6iCkHyMlJWe/znCeTPbNn1pmTZGXPntlbVBVjjDEmtfn5OgBjjDGZkyUYY4wxXmEJxhhjjFdYgjHGGOMVlmCMMcZ4RYCvA0gvChYsqKGhob4OwxhjMpS1a9ceU9VCia2zBOMIDQ0lKirK12EYY0yGIiK/J7XOLpEZY4zxCkswxhhjvMISjDHGGK+wPhhjsqDLly8THR3NhQsXfB2KySCCgoIoXrw4gYGBHtexBGNMFhQdHU2ePHkIDQ1FRHwdjknnVJXjx48THR1N6dKlPa5nl8iMyYIuXLhAgQIFLLkYj4gIBQoUuO4WryUYY7IoSy7metzIz4vXEoyITBKRIyKyxa2shohEishmEZkjIsEJ6pQUkTMi8pxbWR1n+90iMlKcdyki2UVkplO+SkRC3er0FJFdzqunt94juJqOb/6wjTX7YrCpD4wx5m/ebMFMAdokKJsAvKiq1YBZwPMJ1r8P/JigbCzQFyjvvOL32Qc4oarlnHpvAYhICDAUqA/UA4aKSP5UeD+J+iPmHJ+t+oMu4yK58/2lTFy+l5PnLnnrcMYYYNy4cUydOjVV9hUaGsqxY8eS3ebNN9+85vtGjRqlyrG3b99OzZo1qVWrFnv27CF37typsl9PjBgxgnPnznn1GF5LMKq6FIhJUFwBWOosLwQ6xa8QkQ7Ab8CvbmVFgWBVjVRX82Aq0MFZ3R74xFn+CmjptG5aAwtVNUZVTzjHSZjoUk2pArlY/XJL3u5UndzZA3ht7lbqvfkTT32+nlW/HbdWjTEpUFWuXr16XXX69etHjx49/lEeFxeXWmFdI2GCWbFiRars99tvv6V9+/asX7+esmXLpso+46V0XjN0gknCFqCds9wFKAEgIrmAF4D/JNi+GBDt9n20Uxa/bj+AqsYBp4AC7uWJ1LmGiPQVkSgRiTp69OgNviXImS2A++uW4NuBjfnhiaZ0rVuCn7Yd4YHxK2k5fAkTlv1GzFlr1RgTb9++fVSqVIkBAwZQu3Zt9u/fzzvvvEPdunWpXr06Q4cO/WvbqVOnUr16dWrUqMHDDz8MwLBhw3j33XcBaN68Of/6179o1qwZH3zwAWvWrKFRo0bUqFGDevXqERsby5QpUxg0aNBf+7z33ntZvHjxP+Lq0KEDderUoUqVKowfPx6AF198kfPnz1OzZk26d+8O8FdLQ1V5/vnnqVq1KtWqVWPmzJkALF68mObNm9O5c2cqVqxI9+7d//HP5g8//MCIESOYMGECLVq0uGZdUvsdMGAAs2fPBqBjx4707t0bgIkTJzJkyJBEz2v//v0JCwujSpUqf53XkSNHcvDgQVq0aPHXsRcsWEDDhg2pXbs2Xbp04cyZM9f1mSYmrW9T7g2MFJFXgNlA/F/d/wDvq+qZBB1JifUqaQrrkqtzbaHqeGA8QFhYWKo0NSrfGsyr7avy4l0V+X7TIWas/oPXv9/G2/N20KZqEbrVK0mDMiHWwWrSjf/M+ZWtB0+n6j4r3xrM0LZVkt1mx44dTJ48mTFjxrBgwQJ27drF6tWrUVXatWvH0qVLKVCgAG+88QYREREULFiQmJiEF0VcTp48yZIlS7h06RIVK1Zk5syZ1K1bl9OnT5MjRw6P4540aRIhISGcP3+eunXr0qlTJ/73v/8xatQoNmzY8I/tv/nmGzZs2MDGjRs5duwYdevWJTw8HID169fz66+/cuutt9K4cWMiIiJo0qTJX3Xvvvtu+vXrR+7cuXnuuec82m94eDjLli2jXbt2HDhwgEOHDgGwfPlyunbt+o/zCvDGG28QEhLClStXaNmyJZs2beKJJ55g+PDh/PLLLxQsWJBjx47x+uuvs2jRInLlysVbb73F8OHDeeWVVzw+d4lJ0wSjqtuBVgAichtwj7OqPtBZRN4G8gFXReQC8DVQ3G0XxYGDznI0rhZQtIgEAHlxXZKLBponqLM49d9N8nJmC6BLWAm6hJVg+5+n+Xz1fr5eF83sjQcpUzAXXeuVoFPt4hTInT2tQzMmXShVqhQNGjQAXP89L1iwgFq1agFw5swZdu3axcaNG+ncuTMFCxYEICQkJNF9PfDAA4Drj2vRokWpW7cuAMHBwYlun5SRI0cya9YsAPbv38+uXbsoUKBAktsvX76cbt264e/vzy233EKzZs1Ys2YNwcHB1KtXj+LFXX++atasyb59+65JMMlJar9NmzZlxIgRbN26lcqVK3PixAkOHTpEZGQkI0eO5Pjx49ecV4AvvviC8ePHExcXx6FDh9i6dSvVq1e/5ngrV65k69atNG7cGIBLly7RsGHD6zp3iUnTBCMihVX1iIj4AUOAcQCq2tRtm2HAGVUd5XwfKyINgFVAD+BDZ9PZQE8gEugM/KyqKiLzgTfdOvZbAS95/c0lo2KRYIa1q8ILbSryw2ZXq+bNH7bzzvwdtK5ShAfrlaRhWXsmwfhGSi0Nb8mVK9dfy6rKSy+9xOOPP37NNiNHjvTo9yJ+X6qa6PYBAQHX9Eck9jzH4sWLWbRoEZGRkeTMmZPmzZun+NxHcn2s2bP//c+jv7//dfUPJbXfYsWKceLECebNm0d4eDgxMTF88cUX5M6dmzx58nD8+PFrzuvevXt59913WbNmDfnz56dXr16JvidV5c4772TGjBkex+gJb96mPAPXH/8KIhItIn2AbiKyE9iOqyUy2YNd9cd199luYA9/32U2ESggIruBZ4AXAVQ1BngNWOO8XnXKfC5HNn861SnOV/0bseDpcB5qUIplu47x4IRV3DF8CdNW/s65S97ppDQmPWvdujWTJk3667r/gQMHOHLkCC1btuSLL77g+PHjAEleIotXsWJFDh48yJo1awCIjY0lLi6O0NBQNmzYwNWrV9m/fz+rV6/+R91Tp06RP39+cubMyfbt21m5cuVf6wIDA7l8+fI/6oSHhzNz5kyuXLnC0aNHWbp0KfXq1bvh8+DJfhs2bMiIESMIDw+nadOmvPvuuzRt2jTR/Zw+fZpcuXKRN29eDh8+zI8//n2Tbp48eYiNjQWgQYMGREREsHv3bgDOnTvHzp07b/p9eK0Fo6rdklj1QQr1hiX4Pgqomsh2F3DdKJDYPiYBkzwK1EduuyUPQ9u6WjXfbzrElBX7+Pe3W3hn3na61itJj4alKJ4/p6/DNCZNtGrVim3btv11WSZ37tx8+umnVKlShZdffplmzZrh7+9PrVq1mDJlSpL7yZYtGzNnzmTw4MGcP3+eHDlysGjRIho3bkzp0qWpVq0aVatWpXbt2v+o26ZNG8aNG0f16tWpUKHCNZeZ+vbtS/Xq1alduzbTp0//q7xjx45ERkZSo0YNRIS3336bIkWKsH379ps6H0ntF6Bp06YsWLCAcuXKUapUKWJiYpJMMDVq1KBWrVpUqVKFMmXK/HUJLP493XXXXRQtWpRffvmFKVOm0K1bNy5evAjA66+/zm233XZT70PsNlqXsLAw9eWEY6rK2t9PMDliH/N+/RNVpXWVIjzSuDR1Q/Pb5TOTqrZt20alSpV8HYbJYBL7uRGRtaoaltj2NthlOiEihIWGEBYawoGT55kW+TszVv/Bj1v+pMqtwTzSuDRtaxQle4C/r0M1xhiP2Fhk6VCxfDl48a6KrHypJW92rMaluKs89+VGGv/vZ4Yv3MmRWBti3RiT/lkLJh3Lkc2fB+uXpFu9EizffYzJEfsY+dMuxi7ezb3Vb+WRxqFUL57P12GaDCqpO66MScyNdKdYgskARISm5QvRtHwh9h47yycr9vFl1H5mrT9AnVL5eaRxKG2qFCHA3xqkxjNBQUEcP37chuw3HomfDyYoKOi66lknv8PXnfzXK/bCZb6MimbKin38EXOO4vlz0De8DF3qlCBHNuunMcmzGS3N9UpqRsvkOvktwTgyWoKJd+Wq8tO2w4xbsod1f5ykQK5s9GoUSo+GoeTN6fnUpsYYcyMswXggoyaYeKrKmn0nGLt4N7/sOEoup/+mT5MyFMl7fc1aY4zxlCUYD2T0BONu26HTfLRkD3M2HcJPoGOtYvQNL0u5wmk314QxJmuwBOOBzJRg4u2POceEZb/x+Zr9XLpylVaVb6Ffs7LUKum1+deMMVmMJRgPZMYEE+/YmYt8smIfn6zYx+kLcTQoE0L/5uUIL1/Q7iAyxtwUSzAeyMwJJt6Zi3F8vvoPJizby5+nL1C5aDD9mpfl7qp2i7Mx5sZYgvFAVkgw8S7FXeXbDQcYt2QPvx09S8mQnPRvXpZOtYuTLcASjTHGc5ZgPJCVEky8q1eVhdsOM+aX3WyMPkWxfDkYdHs5SzTGGI9ZgvFAVkww8VSVJTuPMmLRLjbsP2mJxhjjMUswHsjKCSZeYolmYItydK5jicYYkzhLMB6wBPM3SzTGGE9ZgvGAJZh/UlWW7jrG+wt3WqIxxiTKEowHLMEkLT7RjFi0k/V/uBLNgBZl6VKnhCUaY7I4SzAesASTMlVl2a5jvG+JxhjjsATjAUswnotPNCMW7WSdk2gG3+66dGYPbBqTtViC8YAlmOunqizffYzhC10tmjIFc/FsqwrcVbUIfn42BI0xWUFyCcb+3TQ3LH6mzW/6N+LjHmEE+vsx8LN1tB8dwdKdR29oilVjTOZhCcbcNBHhzsq38MOTTRl+fw1OnLtEj0mrefDjVaz/44SvwzPG+IhdInPYJbLUczHuCp+v3s+HP+/i2JlLtKp8C8+1rsBtt+TxdWjGmFTmk0tkIjJJRI6IyBa3shoiEikim0VkjogEO+X1RGSD89ooIh3d6tRxtt8tIiPFGV9eRLKLyEynfJWIhLrV6Skiu5xXT2+9R5O47AH+9GwUypLnW/DsnbcRuec4bUYs5dkvNhJ94pyvwzPGpBGvtWBEJBw4A0xV1apO2RrgOVVdIiK9gdKq+m8RyQlcUtU4ESkKbARudb5fDTwJrAR+AEaq6o8iMgCorqr9RKQr0FFVHxCRECAKCAMUWAvUUdVkr9VYC8Z7Tpy9xNgle5iyYh8odG9QkoEtylEwd3Zfh2aMuUk+acGo6lIgJkFxBWCps7wQ6ORse05V45zyIFyJASfZBKtqpLoy4VSgg7Nde+ATZ/kroKXTumkNLFTVGCepLATapPLbM9chf65s/OvuSix5vjmd6hRjauTvNHv7F4Yv3Enshcu+Ds8Y4yVp3cm/BWjnLHcBSsSvEJH6IvIrsBno5yScYkC0W/1opwzn634AZ9tTQAH38kTqGB8qmjcH/72vOgueDqd5hcKM/GkX4W//woRlv3Hh8hVfh2eMSWVpnWB6AwNFZC2QB7gUv0JVV6lqFaAu8JKIBAGJPUwRf00vqXXJ1bmGiPQVkSgRiTp69Oh1vA1zM8oWys3o7rWZM6gJVYvl5fXvt9HyvSXM3njQbm02JhNJ0wSjqttVtZWq1gFmAHsS2WYbcBaoiqv1UdxtdXHgoLMcjdMCEpEAIC+uS3J/lSdSJ+GxxqtqmKqGFSpU6GbemrkB1YrnZVqf+kx/tD55cwTyxIz1dByzgrW/J7yyaozJiNI0wYhIYeerHzAEGOd8X9pJEohIKVx9NftU9RAQKyINnP6VHsB3zu5mA/F3iHUGfnb6aeYDrUQkv4jkB1o5ZSadalyuIHMGN+GdztU5dOo8ncZGMmD6Wn4/ftbXoRljbkKAt3YsIjOA5kBBEYkGhgK5RWSgs8k3wGRnuQnwoohcBq4CA1T1mLOuPzAFyAH86LwAJgLTRGQ3rpZLVwBVjRGR14A1znavqqr9S5zO+fsJXcJKcE/1ony8dC/jluxh4dbD9GwYyuDby5M3Z6CvQzTGXCd70NJhtymnL0dOX+C9BTv5Yu1+1+Wz28vzUINSNmqzMemMjUVmMpzCwUG81bk63w9uStVb8/Lq3K20HrGU+b/+aTcCGJNBWIIx6VrlW4OZ1qcek3vVxd9PeHzaWh4Yv5JN0Sd9HZoxJgWWYEy6JyK0qFiYeU825fUOVdlz5AztRkXw9MwNHDx53tfhGWOSYH0wDuuDyThiL1xmzOI9TFy+FwEebVqa/s3LkTu71+5ZMcYkwfpgTKaSJyiQF9pU5Odnm9GmahFG/7KH299dzKz10dY/Y0w6YgnGZFjF8+fkg661mDWgEUXzBvH0zI10HhfJlgOnfB2aMQZLMCYTqFUyP7MGNObtztX5/fhZ2o5azkvfbOb4mYu+Ds2YLM0SjMkU/PyE+8NK8PNzzenTuDRfRu2nxbuLmRKxl7grV30dnjFZkiUYk6kEBwUy5N7KzHuqKTVK5GPYnK3cM3I5K/YcS7myMSZVWYIxmVK5wnmY2rseHz1ch7OX4njw41UMnL6OA3ZbszFpxhKMybREhNZVirDomWY8c+dt/LT9MC3fW8wHi3bZ/DPGpAFLMCbTCwr054mW5fnp2ea0rHQL7y/ayR3DlzBviw07Y4w3WYIxWUaxfDkY/WBtZjzWgNzZA+j36Voenria3UdifR2aMZmSJRiT5TQsW4C5g5vwn3ZV2BR9kjYjlvHG91s5ezHO16EZk6lYgjFZUoC/Hz0bhbL4+RZ0CSvOx8v2OpfNDtllM2NSiSUYk6WF5MrGf++rztf9G5EvZzb6fbqO3lPWsD/mnK9DMybDswRjDFCnVH7mDGrMkHsqsXpvDHcMX8LoX3ZzKc4e0jTmRlmCMcYR4O/Ho03LsOjZZrSsVJh35u/grg+W2kOaxtwgSzDGJFA0bw7GdK/D5EfqcvmK8uDHq3h65gaOxtrYZsZcD0swxiShRYXCLHg6nMG3l2PupoO0fG8x01b+zpWrdhOAMZ6wBGNMMoIC/Xm2VQXmPRVO1WJ5+fe3W7hv7AqbEsAYD1iCMcYDZQvlZvqj9fmga00OnDhHu1HLGTb7V2IvXPZ1aMakW5ZgjPGQiNC+ZjF+erY53euX4pPIfbR8bwlzNh60Z2eMSUSKCUZEuohIHmd5iIh8IyK1vR+aMelT3hyBvNahKt8OaEzh4OwMnrGeXpPt2RljEvKkBfNvVY0VkSZAa+ATYKx3wzIm/atRIh/fDWzC0LaVidoXQ6v3lzJx+V67CcAYhycJJn5c83uAsar6HZDNeyEZk3H4+wmPNC7Ngmea0aBMCK/N3cp9YyLYdui0r0Mzxuc8STAHROQj4H7gBxHJ7kk9EZkkIkdEZItbWQ0RiRSRzSIyR0SCnfI7RWStU75WRG53q1PHKd8tIiNFRJzy7CIy0ylfJSKhbnV6isgu59XT47NhzA0qli8Hk3rVZWS3WkSfOE/bD5fz7vwdNu+MydI8STD3A/OBNqp6EggBnveg3hSgTYKyCcCLqloNmOW2n2NAW6e8JzDNrc5YoC9Q3nnF77MPcEJVywHvA28BiEgIMBSoD9QDhopIfg/iNeamiAjtatzKomea0b5mMUb9spu7P1jGyt+O+zo0Y3wiyQQjIlEi8gEQDvygqrsAVPWQqi5IacequhSISVBcAVjqLC8EOjnbrlfVg075r0CQ00IpCgSraqS6btOZCnRwtmuPqz8I4CugpdO6aQ0sVNUYVT3hHCdhojPGa/LnysZ799dgWp96XL56la7jV/LSN5s5dd5uaTZZS3ItmAa4WhnNgSUi8oOIPCkit93E8bYA7ZzlLkCJRLbpBKxX1YtAMSDabV20U4bzdT+AqsYBp4AC7uWJ1LmGiPR1EmnU0aNHb+gNGZOUpuULMf+pcPqGl2Hmmj+405kOwJisIskEo6pxqrpYVV9U1fq4LknFAq+LyHoRGXMDx+sNDBSRtUAe4JL7ShGpgutS1+PxRYmFlsK65OpcW6g6XlXDVDWsUKFCHoRvzPXJmS2Af91die8GNqFg7uz0+3Qdj0+L4vDpC74OzRiv8/hBS+fS2CRVvR+oA0y/3oOp6nZVbaWqdYAZwJ74dSJSHFeLqYeqxpdHA8XddlEcOOi2roRTNwDIi+uS3F/lidQxxieqFc/Ld4Ma80KbiizecZQ73lvCZ6v+4Krd0mwysYCkVojIHJL4zx9AVdsltS6ZfRZW1SMi4gcMAcY55fmA74GXVDXC7RiHRCRWRBoAq4AewIfO6tm4bgiIBDoDP6uqish84E23jv1WwEvXG6sxqS3Q34/+zctyV9UivPTNZv41azPfrj/AfztVo2yh3L4Oz5hUJ0kNcSEizZKrqKpLkt2xyAxc/TcFgcO47uzKDQx0NvkGV0JRERmCKwnscttFKycZheG6Iy0H8CMw2KkThOtus1q4Wi5dVfU359i9gX85+3lDVScnFytAWFiYRkVFpbSZMalCVfkyKprXv9/KhctXefKO8jweXoYAfxu9yWQsIrJWVcMSXefJGEoikg2I79zfoaqZ7nYYSzDGF47EXmDY7F/5YfOfVCuWl3e6VKdikWBfh2WMx5JLMJ48MNkcV8tiNDAG2Cki4akZoDFZVeE8QYzpXofRD9bm4EnXA5of/rSLy1dsqmaT8XnSHn8P1+WqZqoajus5k/e9G5YxWcs91Yuy4OlwWlcpwnsLd9LRhpsxmYAnCSZQVXfEf6OqO4FA74VkTNZUIHd2Rj1Ym7Hda/PnqQu0G7WckdaaMRmYJwkmSkQmikhz5/UxsNbbgRmTVd1VrSgLnm5Gm6pFGb5wJx1GR7D1oLVmTMbjSYLpj2v4lieAJ4GtQD9vBmVMVheSKxsfdqvFuIdqc/i0qzUzYtFOLsVZa8ZkHB7dRZYV2F1kJr06cfYSw+b8yncbDlKpaDDvdqlOlVvz+josY4Cbv4vsXmdomBgROe08+GjtdWPSSP5c2figay0+ergOR2Mv0n5UBO8vtNaMSf88uUQ2AtcT8wVUNVhV86iq3ahvTBprXaUIi54Jp22NW/ngp120G7WcLQdO+TosY5LkSYLZD2xRu5ZmjM/ly5mN9x+oycc9wjh+9hLtR0cwfMEOa82YdCnJscjc/B+umSyXABfjC1V1uNeiMsYk687Kt1A3ND+vzt3KyJ93s2DrYd5/oCaVitrFBZN+eNKCeQM4BwThGmI//mWM8aF8ObMx/P6aTOgRxrEzrr6ZcUv2cMVGaDbphCctmBBVbeX1SIwxN+SOyrcwv2Q4L8/awv9+3M6irYd57/4alCqQy9ehmSzOkxbMIhGxBGNMOlYgd3bGPlSb9x+owY7Dsdz1wTI+W/UH1nVqfMmTBDMQmCci5+02ZWPSLxGhY63izH8qnFol8/GvWZt5ZMoajtjsmcZHUkwwzm3Jfqqaw25TNib9uzVfDqb1rs+wtpVZ+dtxWo1YytxNNqmrSXs2u5ExmZCfn9CrcWm+f6IppQrkYtBn63lixnpOnrvk69BMFmIJxphMrGyh3HzdryHP3HkbP2w+ROsRS1m686ivwzJZhCUYYzK5AH8/nmhZnlkDGpMnKJAek1bz72+3cO5SnK9DM5mcRwlGRJqIyCPOciERKe3dsIwxqa1a8bzMHdyER5uU5tNVv3P3B8tY+/sJX4dlMjFPBrscCrwAvOQUBQKfejMoY4x3BAX6M+Teynz2aAMuX1G6jFvBO/O321Azxis8acF0BNoBZwFU9SD2JL8xGVrDsgWY91RTOtUuzuhf9tBxTAS7j5zxdVgmk/EkwVxyBrpUABGxx4ONyQTyBAXyTpcafPRwHQ6ePM+9Hy5j+qrf7eFMk2o8STBfiMhHQD4ReQxYBEzwbljGmLTSukoR5j0VTt3QEF6etYXHpq7l+JmLKVc0JgUezWgpIncCrQAB5qvqQm8HltZsRkuT1V29qkxesY+3ftxO3pyBvNelBuG3FfJ1WCadu9kZLd9S1YWq+ryqPqeqC0XkrdQP0xjjS35+Qp8mpfluUGPy53TdzvzqnK1cuHzF16GZDMqTS2R3JlJ2V2oHYoxJHyoVDWb2oCb0ahTKpIi9dBgdwY4/Y30dlsmAkkwwItJfRDYDFURkk9trL7AppR2LyCQROSIiW9zKaohIpIhsFpE5IhLslBcQkV9E5IyIjEqwnzrO9rtFZKSIiFOeXURmOuWrRCTUrU5PEdnlvHpe91kxJosLCvRnWLsqTO5Vl2NnLtJ21HKmROy1GwDMdUmuBfMZ0BaY7XyNf9VR1Yc82PcUoE2CsgnAi6paDZgFPO+UXwD+DTyXyH7GAn2B8s4rfp99gBOqWg54H3gLQERCgKFAfaAeMFRE8nsQrzEmgRYVCzPvqXCalCvIsDlbeWTKGo7G2g0AxjNJJhhVPaWq+1S1m6r+DpzHdatybhEpmdKOVXUpEJOguAKw1FleCHRytj2rqstxJZq/iEhRIFhVI51bpacCHZzV7YFPnOWvgJZO66Y1sFBVY1T1hHOchInOGOOhgrmzM7FnGK+1r0LknuO0GbGUn7cf9nVYJgPwpJO/rYjsAvYCS4B9wI83eLwtuB7aBOgClEhh+2JAtNv30U5Z/Lr9AKoaB5wCCriXJ1LnGiLSV0SiRCTq6FEbANCYpIgIDzcMZe7gJhQODqL3lChe+W6L3QBgkuVJJ//rQANgp6qWBloCETd4vN7AQBFZi2s0gJTGDpdEyjSFdcnVubZQdbyqhqlqWKFCdjumMSkpf0sevh3YiMealmZq5O/c++Fyfj14ytdhmXTKkwRzWVWPA34i4qeqvwA1b+RgqrpdVVupah1gBrAnhSrRQHG374sDB93WlQAQkQAgL65Lcn+VJ1LHGHOTsgf48/I9lZnWpx6nz1+m4+gVTFj2G1ev2g0A5lqeJJiTIpIbV9/JdBH5ALihcb5FpLDz1Q8YAoxLbntVPQTEikgDp3+lB/Cds3o2EH+HWGfgZ6efZj7QSkTyO537rZwyY0wqalq+EPOeCqdZhUK8/v02+nyyxkYAMNdI8Ul+Z+yx87iSUXdcLYXpTqsmuXozgOZAQeAwrju7cgMDnU2+AV5ykgIisg8IBrIBJ4FWqrpVRMJw3ZGWA1ffz2BVVREJAqYBtXC1XLqq6m/OvnoD/3KO84aqTk7pRNiT/MbcGFVl2srfef37beTLEciIrjVpVLagr8MyaSS5J/mTTTAi4o9raJg7vBVcemEJxpibs/XgaQbNWMfeY2cZ1KIcT7YsT4C/zWmY2d3wUDGqegU4JyJ5vRKZMSbTqHxrMHMHN6FLneJ8+PNuuo5fyYGT530dlvEhT/69uABsFpGJzpP0I0VkpLcDM8ZkPDmzBfB25xp80LUm2/+M5e4PljFvy5++Dsv4SIAH23zvvIwxxiPtaxajZol8DJ6xnn6fruXhBqV4+Z5KBAX6+zo0k4Y8STD7gZWqes7bwRhjMo9SBXLxVb9GvDN/Ox8v28uafTGMerAW5QrbhLhZhSeXyHoBG5xBKt92nuy3sb2MMSnKFuDHy/dUZvIjdTkSe5G2H0bwRdR+GzQzi0gxwahqD1W9Dde4YdHAaMDGVTHGeKxFhcL8+GRTapXMx/99tYknP99A7IXLvg7LeJknY5E95EyZ/BVwBzAKaOrtwIwxmcstwUFM61Of51rdxvebD3HPyOVs3H/S12EZL/LkEtkIXEPDfAw8oapvq2qkN4MyxmRO/n7CoNvLM7NvA65cVTqNXcHHS22YmczKk0tkBXENUhkEvCEiq0VkmtcjM8ZkWmGhIfzwRFNaVirMGz9so/cna4g5m9LYtyaj8eQSWTBQEigFhOIaKuaqd8MyxmR2eXMGMu6hOrzWvgordh/nnpHLWPt7wimkTEbmySWy5bhmstwEPKCqFVTVpiE2xty0+HlmvhnQiEB/Px74aCXjl+6xu8wyCU8ukVVX1QHAHFyDUBpjTKqqWiwvc59owp2Vb+HNH7bz2NQoTp6zS2YZnSeXyKqKyHpcs1FuFZG1IlLV+6EZY7KS4KBAxnSvzbC2lVmy8yj3jFzO+j9O+DoscxM8uUQ2HnhGVUupakngWafMGGNSlYjQq3FpvurXCBG4/6NIJi7fa5fMMihPEkwuZxZLAFR1MZDLaxEZY7K8GiXy8f3gpjSvUJjX5m6l36drOXXeHszMaDxJML+JyL9FJNR5DQH2ejswY0zWljdnIOMfrsOQeyrx07Yj3PvhMjZFn/R1WOY6eJJgegOFcM1AOctZfsSbQRljDLgumT3atAxf9GvI1avQaewKpkTYJbOMIsUpk7MKm9HSmPTt5LlLPPvFRn7afoS7qxXhf52qExwU6OuwsrzkZrRMcrh+EZkDJJl9VLVdKsRmjDEeyZczGx/3COPjZb/x9vwd/HpwOaMfrE3VYjbhbnqV3Hww76ZZFMYY4wE/P+HxZmWpUyo/gz5bz31jVvBK28p0r18SEfF1eCaB5BLMXlX9I80iMcYYD4WFhvDDk015euYGhny7hdV7Y/jvfdXIld2TORRNWkmuk//b+AUR+dr7oRhjjOdCcmVjcq+6PN+6AnM3HaTD6Ah2Hznj67CMm+QSjHt7s4y3AzHGmOvl5ycMbFGOaX3qE3P2Eu1HLef7TYd8HZZxJJdgNIllY4xJVxqXK8jcJ5pwW5E8DPxsHa/N3crlKzbou68ll2BqiMhpEYkFqjvLp0UkVkROp1WAxhjjiaJ5czCzb0N6NQpl4vK9PPjxSg6fvuDrsLK0JBOMqvqrarCq5lHVAGc5/vvgtAzSGGM8kS3Aj2HtqvBB15psOXCae0YuZ+Vvx30dVpblyZP8N0REJonIERHZ4lZWQ0QiRWSziMxxJjOLX/eSiOwWkR0i0tqtvI6z/W4RGSnOvYgikl1EZjrlq0Qk1K1OTxHZ5bxs7hpjspj2NYvx3aDGBOcIoPuEVXy0xOaY8QWvJRhgCtAmQdkE4EVVrYZr2JnnAUSkMtAVqOLUGSMi/k6dsUBfoLzzit9nH+CEqpYD3gfecvYVAgwF6gP1gKEikt8L788Yk47ddkseZg9qQusqt/DfH7fT79O1nL5gA2amJa8lGFVdCiSc/7QCsNRZXgh0cpbbA5+r6kVV3QvsBuqJSFEgWFUj1fXvx1Sgg1udT5zlr4CWTuumNbBQVWNU9YRznISJzhiTBeTOHsDoB2sz5J5KLNp2hPajItj+p3UhpxVvtmASswWIH2KmC1DCWS4G7HfbLtopK+YsJyy/po6qxgGngALJ7OsfRKSviESJSNTRo0dv8C0ZY9Kz+AEzZzzWgLMX4+gwOoJZ66NTrmhuWlonmN7AQBFZC+QB4udETWyMB02m/EbrXFuoOl5Vw1Q1rFChQskGbozJ2OqVDmHuE02oUTwfT8/cyJBvN3Mx7oqvw8rU0jTBqOp2VW2lqnWAGcAeZ1U0f7dmAIoDB53y4omUX1NHRAKAvLguySW1L2NMFlc4TxDTH63P4+Fl+HTlH9z/0UoOnDzv67AyrTRNMCJS2PnqBwwBxjmrZgNdnTvDSuPqzF+tqoeAWBFp4PSv9AC+c6sTf4dYZ+Bnp59mPtBKRPI7nfutnDJjjCHA34+X7q7EuIdqs+fIGe4duYxlu+wSuTd48zblGUAkUEFEokWkD9BNRHYC23G1KiYDqOqvwBfAVmAeMFBV49uu/XHdfbYbV4vnR6d8IlBARHYDzwAvOvuKAV4D1jivV50yY4z5S5uqRZk9qDGF8wTRc9Jqxi62W5lTm0045rAJx4zJms5diuP/vtrE3E2HuLtaEd7uXIPcNiqzx5KbcCytO/mNMSZdyZktgA+71eJfd1dk3pY/6Tg6gr3Hzvo6rEzBEowxJssTEfqGl2Van/ocO3ORdh8u56dth30dVoZnCcYYYxyNyxVkzuAmlCqYkz6fRDFi0U6uXrVuhBtlCcYYY9wUz5+Tr/o14r7axRixaBd9p0XZEDM3yBKMMcYkEBToz3tdavCfdlVYvOMoHUZFsOtwrK/DynAswRhjTCJEhJ6NQvnssQacvuAaYubHzTZb5vWwBGOMMcmoVzqEuYObUP6WPPSfvo635m3nivXLeMQSjDHGpKBI3iBmPt6AbvVKMnbxHnpNXs3Jc5dSrpjFWYIxxhgPZA/w57/3VeN/91Vj1W8xtB21nK0Hbej/5FiCMcaY69C1XklmPt6Ay3HKfWMj+G7DAV+HlG5ZgjHGmOtUq2R+5gxuQvVi+Xjy8w28NncrcVeu+jqsdMcSjDHG3IBCebIz/bH69GoUysTle+k1eY31yyRgCcYYY25QoL8fw9pV4e1O1Vm9N4Z2oyLYac/L/MUSjDHG3KT765ZgRt8GnL98hY6jI5j/65++DildsARjjDGpoE6p/MwZ1IRyhXPz+LS1fLBoV5Yfx8wSjDHGpBLX8zINua9WMd5ftJMB09dx9mKcr8PyGUswxhiTioIC/Xnv/hoMuacSC7b+SaexK/jj+Dlfh+UTlmCMMSaViQiPNi3DlEfqcfDkedqNXs6K3cd8HVaaswRjjDFeEn5bIWYPakLB3Nl5eNJqpkTsJStNU28JxhhjvCi0YC5mDWhEiwqFGTZnKy98vYmLcVd8HVaasARjjDFelicokPEP1+GJ28vxRVQ03cav5MjpC74Oy+sswRhjTBrw8xOeaVWBMd1rs+1QLO1GRbBx/0lfh+VVlmCMMSYN3V2tKF/3b0SAv9Dlo0i+WRft65C8xhKMMcakscq3BjN7UBNql8zHM19s5I3vt2bKScwswRhjjA+E5MrGtD716dGwFB8v28ujn6wh9sJlX4eVqryWYERkkogcEZEtbmU1RWSliGwQkSgRqeeUZxORySKyWUQ2ikhztzp1nPLdIjJSRMQpzy4iM53yVSIS6lanp4jscl49vfUejTHmZgT6+/Fq+6q83qEqS3cd474xmeuhTG+2YKYAbRKUvQ38R1VrAq843wM8BqCq1YA7gfdEJD62sUBfoLzzit9nH+CEqpYD3gfeAhCREGAoUB+oBwwVkfyp/N6MMSbVPNSgFNN61+NI7EXaj17Oyt+O+zqkVOG1BKOqS4GYhMVAsLOcFzjoLFcGfnLqHQFOAmEiUhQIVtVIdT2dNBXo4NRpD3ziLH8FtHRaN62Bhaoao6ongIX8M9EZY0y60qhcQb4b2JiQXNl4aMIqZqz+w9ch3bS07oN5CnhHRPYD7wIvOeUbgfYiEiAipYE6QAmgGOB+i0W0U4bzdT+AqsYBp4AC7uWJ1DHGmHQrtGAuvhnQmEblCvLSN5v5z5xfM/RMmWmdYPoDT6tqCeBpYKJTPglXIogCRgArgDhAEtlH/K0WSa1Lrs41RKSv0xcUdfToUU/fgzHGeE3eHIFM6hnGI41DmRyxj96fRHHqfMbs/E/rBNMT+MZZ/hJXHwmqGqeqT6tqTVVtD+QDduFKOsXd6hfn78tq0bhaOYhIAK5LbjHu5YnUuYaqjlfVMFUNK1So0M2/O2OMSQUB/n4MbVuF/95XjRW7j9FxTAR7j531dVjXLa0TzEGgmbN8O64kgojkFJFczvKdQJyqblXVQ0CsiDRw+ld6AN859WfjSlgAnYGfnX6a+UArEcnvdO63csqMMSZD6VavJJ8+Wp8TZy/RYXREhhuR2Zu3Kc8AIoEKIhItIn1w3S32nohsBN7EdXcYQGFgnYhsA14AHnbbVX9gArAb2AP86JRPBAqIyG7gGeBFAFWNAV4D1jivV50yY4zJcBqUKcB3A5tQOI9rROZpK3/3dUgek6w0dHRywsLCNCoqytdhGGNMomIvXOaJGev5ZcdRejQsxSv3VibA3/fPyovIWlUNS2yd76MzxhiTojxBgUzoWZfHmpZmauTv9Jq8hlPn0nfnvyUYY4zJIPz9hJfvqczbnauzau9xOoyJYM/RM74OK0mWYIwxJoO5P6wEnz3WgFPnL9NxdATLdqXPxywswRhjTAZUNzSE7wY2pmjeHPSavIZP02HnvyUYY4zJoEqE5OSr/g0JL1+QId9u4bW56WvYf0swxhiTgeUJCuTjHmH0ahTKxOV7eXxaFGcvxvk6LMASjDHGZHgB/n4Ma1eFV9tX4eftR+g8LpKDJ8/7OixLMMYYk1n0aBjKpF512R9zjg6jI9gcfcqn8ViCMcaYTKR5hcJ83b8Rgf5+dPloBfO2HPJZLJZgjDEmk6lQJA/fDmxMxSLB9Pt0HWMX78EXo7ZYgjHGmEyoUJ7sfN63AfdWL8pb87bzwtebuBSXtnPLBKTp0YwxxqSZoEB/RnatRZmCuRj58272x5xn7EO1yZczW5oc31owxhiTifn5Cc+0qsDw+2uw9vcT3DdmRZrNLWMJxhhjsoD7ahdn+mP1OXHuEh3HRLDyt+NeP6YlGGOMySLqhobw7cDGFMiVjYcnruKrtdFePZ4lGGOMyUJKFcjFN/0bU690CM99uZG3523nqpeGl7EEY4wxWUzenIFMeaQe3eqVYMziPQyasc4rY5jZXWTGGJMFBfr78WbHapQpmJvTFy7j7yepfgxLMMYYk0WJCI+Fl/Ha/u0SmTHGGK+wBGOMMcYrLMEYY4zxCkswxhhjvMISjDHGGK+wBGOMMcYrLMEYY4zxCkswxhhjvEJ8MctZeiQiR4HffR1HMgoCx3wdRDIsvptj8d0ci+/m3Ex8pVS1UGIrLMFkECISpaphvo4jKRbfzbH4bo7Fd3O8FZ9dIjPGGOMVlmCMMcZ4hSWYjGO8rwNIgcV3cyy+m2Px3RyvxGd9MMYYY7zCWjDGGGO8whKMMcYYr7AEk86ISAkR+UVEtonIryLypFM+TEQOiMgG53W3D2PcJyKbnTiinLIQEVkoIrucr/l9FFsFt3O0QUROi8hTvjx/IjJJRI6IyBa3siTPl4i8JCK7RWSHiLT2UXzviMh2EdkkIrNEJJ9THioi593O4zgfxZfk55nW5y+ZGGe6xbdPRDY45Wl6DpP5m+L9n0FVtVc6egFFgdrOch5gJ1AZGAY85+v4nLj2AQUTlL0NvOgsvwi8lQ7i9Af+BEr58vwB4UBtYEtK58v5rDcC2YHSwB7A3wfxtQICnOW33OILdd/Oh+cv0c/TF+cvqRgTrH8PeMUX5zCZvyle/xm0Fkw6o6qHVHWdsxwLbAOK+TYqj7QHPnGWPwE6+C6Uv7QE9qiqT0doUNWlQEyC4qTOV3vgc1W9qKp7gd1AvbSOT1UXqGqc8+1KoLg3Y0hOEucvKWl+/iD5GEVEgPuBGd6OIzHJ/E3x+s+gJZh0TERCgVrAKqdokHPJYpKvLkE5FFggImtFpK9TdouqHgLXDzRQ2GfR/a0r1/5Sp5fzB0mfr2LAfrftovH9Pxi9gR/dvi8tIutFZImINPVVUCT+eabH89cUOKyqu9zKfHIOE/xN8frPoCWYdEpEcgNfA0+p6mlgLFAWqAkcwtXk9pXGqlobuAsYKCLhPowlUSKSDWgHfOkUpafzlxxJpMxnzxKIyMtAHDDdKToElFTVWsAzwGciEuyD0JL6PNPV+XN049p/dHxyDhP5m5LkpomU3dA5tASTDolIIK4fhOmq+g2Aqh5W1SuqehX4mDRo9idFVQ86X48As5xYDotIUQDn6xFfxee4C1inqochfZ0/R1LnKxoo4bZdceBgGscGgIj0BO4Fuqtzcd65bHLcWV6L6/r8bWkdWzKfZ7o5fwAiEgDcB8yML/PFOUzsbwpp8DNoCSadca7XTgS2qepwt/Kibpt1BLYkrJsWRCSXiOSJX8bVGbwFmA30dDbrCXzni/jcXPNfY3o5f26SOl+zga4ikl1ESgPlgdVpHZyItAFeANqp6jm38kIi4u8sl3Hi+80H8SX1eaaL8+fmDmC7qkbHF6T1OUzqbwpp8TOYVncy2MvjOz6a4GqObgI2OK+7gWnAZqd8NlDUR/GVwXWHyUbgV+Blp7wA8BOwy/ka4sNzmBM4DuR1K/PZ+cOV6A4Bl3H9d9gnufMFvIzrv9odwF0+im83ruvw8T+D45xtOzmf+0ZgHdDWR/El+Xmm9flLKkanfArQL8G2aXoOk/mb4vWfQRsqxhhjjFfYJTJjjDFeYQnGGGOMV1iCMcYY4xWWYIwxxniFJRhjjDFeYQnGZDjOaLSp8hyLiDQXkUYebrtPRAqmsE0vEbk1lWIrJCLLRWSLiHRwK/8uqWOISD8R6ZEax09rqXnuTPpgCcZkdc0BjxKMh3oBqfVHshuuQQgbAs8DiEhbXCMUJPpktaqOU9WpN3vg+AcB01gvUu/cmXTAEozJqPxF5GNnfosFIpIDQETKisg8ZyDOZSJS0SlvKyKrnAEGF4nILc7Af/2Ap515Oa4ZdFBECjj7Xi8iH+GM0ZSwBSUiz4lrfpLOQBgw3dnfPSIyy227O0XkGzx3GciBa9j0q86wI08B7yRVwYnjOWd5sYi8JSKrRWRn/PsTEX8ReVdcc/psEpHBTvk+EXlFRJYDXUSklYhEisg6EfnSGcsqfrs3nXVRIlJbROaLyB4R6ecWy/MissY5xn/czt22hJ9dIucux3WcJ5NOWYIxGVV5YLSqVgFO4no6GmA8MFhV6wDPAWOc8uVAA3UNMPg58H+qug8YB7yvqjVVdVmCYwwFljt1ZgMlkwtIVb8ConCN3VUT+AGoJCKFnE0eASZfx3v8DGgNzMM1/8kAYKq6Dd3igQBVrYcrMQ11yvrimuejlqpW5++BLAEuqGoTYBEwBLhDXQObRuEamDHeflVtCCzD9bR6Z6AB8CqAiLTC9RnVwzUgZR35e1DUf3x2Cc+dqp6/jvdo0qkAXwdgzA3aq6obnOW1QKjzH3Yj4EvX8EuA679/cA3YN9MZwyobsNeDY4TjGqgQVf1eRE5cT4CqqiIyDXhIRCbjutTlcf+Iqp4C7gEQ13D0LwD3icjHQH7gPVWNTGE38S2mtbgmugLX+Fjj1JnvRVXd5zGJH5SxAa6JpyKcc5kNcD/WbOfrZiC3uuYZiRWRC+Ka/bKV81rvbJcbV2L5g0Q+uxTeg8mgLMGYjOqi2/IVXJeS/ICTTushoQ+B4ao6W0Sa42oReCKxsZTiuLb1H5RM/cnAHOAC8KX+PYkXACJSH/jI+fYVVZ1N4l4B3sDVL7MWV+vmO6BFCvHHn6cr/P37LiQ9/PpZt20Wqmq3FPZ7lWs/i6vOcQT4r6p+5F7JuSyZ2GdnMiG7RGYyDXXNcbFXRLqAaxRZEanhrM4LHHCWe7pVi8U1jWxilgLdnX3dhavVAHAYKOz00WTHNaR9ovtzOuMP4rrcNCWRmFc5l4RqJpVcRKQ8cKuqLsE1kOdVXAkiucSWnAVAP6dPBxEJSWSblUBjESnnbJNTRK5nSPn5QG+3fptiIpLSJHTJfRYmA7IEYzKb7kAfEYkf7bm9Uz4M16WzZcAxt+3nAB0T6+QH/gOEi8g6XJd7/gBQ1cu4+hpWAXOB7W51pgDjEnRUT8fVZ7H1Bt/TG7gSFLhG7e2FKwG8e4P7m4DrvWxyztODCTdQ1aPOcWaIyCbneBU9PYCqLsDVyooUkc3AV6ScPKbwz3NnMjAbTdkYLxORUcB6VZ3o61iMSUuWYIzxIhFZi6tf405VvZjS9sZkJpZgjDHGeIX1wRhjjPEKSzDGGGO8whKMMcYYr7AEY4wxxisswRhjjPGK/weFeOE2S2pR4QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEGCAYAAABYV4NmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA5CklEQVR4nO3dd3gV1dbA4d9KgdAChCJIC016Dx0CiAIWmoCCKCAoUu1+6pUrXNu9NkSkiTRBRGwooNJUWggldKQjKAGkhRI6gfX9cSZ6iCkHyMlJWe/znCeTPbNn1pmTZGXPntlbVBVjjDEmtfn5OgBjjDGZkyUYY4wxXmEJxhhjjFdYgjHGGOMVlmCMMcZ4RYCvA0gvChYsqKGhob4OwxhjMpS1a9ceU9VCia2zBOMIDQ0lKirK12EYY0yGIiK/J7XOLpEZY4zxCkswxhhjvMISjDHGGK+wPhhjsqDLly8THR3NhQsXfB2KySCCgoIoXrw4gYGBHtexBGNMFhQdHU2ePHkIDQ1FRHwdjknnVJXjx48THR1N6dKlPa5nl8iMyYIuXLhAgQIFLLkYj4gIBQoUuO4WryUYY7IoSy7metzIz4vXEoyITBKRIyKyxa2shohEishmEZkjIsEJ6pQUkTMi8pxbWR1n+90iMlKcdyki2UVkplO+SkRC3er0FJFdzqunt94juJqOb/6wjTX7YrCpD4wx5m/ebMFMAdokKJsAvKiq1YBZwPMJ1r8P/JigbCzQFyjvvOL32Qc4oarlnHpvAYhICDAUqA/UA4aKSP5UeD+J+iPmHJ+t+oMu4yK58/2lTFy+l5PnLnnrcMYYYNy4cUydOjVV9hUaGsqxY8eS3ebNN9+85vtGjRqlyrG3b99OzZo1qVWrFnv27CF37typsl9PjBgxgnPnznn1GF5LMKq6FIhJUFwBWOosLwQ6xa8QkQ7Ab8CvbmVFgWBVjVRX82Aq0MFZ3R74xFn+CmjptG5aAwtVNUZVTzjHSZjoUk2pArlY/XJL3u5UndzZA3ht7lbqvfkTT32+nlW/HbdWjTEpUFWuXr16XXX69etHjx49/lEeFxeXWmFdI2GCWbFiRars99tvv6V9+/asX7+esmXLpso+46V0XjN0gknCFqCds9wFKAEgIrmAF4D/JNi+GBDt9n20Uxa/bj+AqsYBp4AC7uWJ1LmGiPQVkSgRiTp69OgNviXImS2A++uW4NuBjfnhiaZ0rVuCn7Yd4YHxK2k5fAkTlv1GzFlr1RgTb9++fVSqVIkBAwZQu3Zt9u/fzzvvvEPdunWpXr06Q4cO/WvbqVOnUr16dWrUqMHDDz8MwLBhw3j33XcBaN68Of/6179o1qwZH3zwAWvWrKFRo0bUqFGDevXqERsby5QpUxg0aNBf+7z33ntZvHjxP+Lq0KEDderUoUqVKowfPx6AF198kfPnz1OzZk26d+8O8FdLQ1V5/vnnqVq1KtWqVWPmzJkALF68mObNm9O5c2cqVqxI9+7d//HP5g8//MCIESOYMGECLVq0uGZdUvsdMGAAs2fPBqBjx4707t0bgIkTJzJkyJBEz2v//v0JCwujSpUqf53XkSNHcvDgQVq0aPHXsRcsWEDDhg2pXbs2Xbp04cyZM9f1mSYmrW9T7g2MFJFXgNlA/F/d/wDvq+qZBB1JifUqaQrrkqtzbaHqeGA8QFhYWKo0NSrfGsyr7avy4l0V+X7TIWas/oPXv9/G2/N20KZqEbrVK0mDMiHWwWrSjf/M+ZWtB0+n6j4r3xrM0LZVkt1mx44dTJ48mTFjxrBgwQJ27drF6tWrUVXatWvH0qVLKVCgAG+88QYREREULFiQmJiEF0VcTp48yZIlS7h06RIVK1Zk5syZ1K1bl9OnT5MjRw6P4540aRIhISGcP3+eunXr0qlTJ/73v/8xatQoNmzY8I/tv/nmGzZs2MDGjRs5duwYdevWJTw8HID169fz66+/cuutt9K4cWMiIiJo0qTJX3Xvvvtu+vXrR+7cuXnuuec82m94eDjLli2jXbt2HDhwgEOHDgGwfPlyunbt+o/zCvDGG28QEhLClStXaNmyJZs2beKJJ55g+PDh/PLLLxQsWJBjx47x+uuvs2jRInLlysVbb73F8OHDeeWVVzw+d4lJ0wSjqtuBVgAichtwj7OqPtBZRN4G8gFXReQC8DVQ3G0XxYGDznI0rhZQtIgEAHlxXZKLBponqLM49d9N8nJmC6BLWAm6hJVg+5+n+Xz1fr5eF83sjQcpUzAXXeuVoFPt4hTInT2tQzMmXShVqhQNGjQAXP89L1iwgFq1agFw5swZdu3axcaNG+ncuTMFCxYEICQkJNF9PfDAA4Drj2vRokWpW7cuAMHBwYlun5SRI0cya9YsAPbv38+uXbsoUKBAktsvX76cbt264e/vzy233EKzZs1Ys2YNwcHB1KtXj+LFXX++atasyb59+65JMMlJar9NmzZlxIgRbN26lcqVK3PixAkOHTpEZGQkI0eO5Pjx49ecV4AvvviC8ePHExcXx6FDh9i6dSvVq1e/5ngrV65k69atNG7cGIBLly7RsGHD6zp3iUnTBCMihVX1iIj4AUOAcQCq2tRtm2HAGVUd5XwfKyINgFVAD+BDZ9PZQE8gEugM/KyqKiLzgTfdOvZbAS95/c0lo2KRYIa1q8ILbSryw2ZXq+bNH7bzzvwdtK5ShAfrlaRhWXsmwfhGSi0Nb8mVK9dfy6rKSy+9xOOPP37NNiNHjvTo9yJ+X6qa6PYBAQHX9Eck9jzH4sWLWbRoEZGRkeTMmZPmzZun+NxHcn2s2bP//c+jv7//dfUPJbXfYsWKceLECebNm0d4eDgxMTF88cUX5M6dmzx58nD8+PFrzuvevXt59913WbNmDfnz56dXr16JvidV5c4772TGjBkex+gJb96mPAPXH/8KIhItIn2AbiKyE9iOqyUy2YNd9cd199luYA9/32U2ESggIruBZ4AXAVQ1BngNWOO8XnXKfC5HNn861SnOV/0bseDpcB5qUIplu47x4IRV3DF8CdNW/s65S97ppDQmPWvdujWTJk3667r/gQMHOHLkCC1btuSLL77g+PHjAEleIotXsWJFDh48yJo1awCIjY0lLi6O0NBQNmzYwNWrV9m/fz+rV6/+R91Tp06RP39+cubMyfbt21m5cuVf6wIDA7l8+fI/6oSHhzNz5kyuXLnC0aNHWbp0KfXq1bvh8+DJfhs2bMiIESMIDw+nadOmvPvuuzRt2jTR/Zw+fZpcuXKRN29eDh8+zI8//n2Tbp48eYiNjQWgQYMGREREsHv3bgDOnTvHzp07b/p9eK0Fo6rdklj1QQr1hiX4Pgqomsh2F3DdKJDYPiYBkzwK1EduuyUPQ9u6WjXfbzrElBX7+Pe3W3hn3na61itJj4alKJ4/p6/DNCZNtGrVim3btv11WSZ37tx8+umnVKlShZdffplmzZrh7+9PrVq1mDJlSpL7yZYtGzNnzmTw4MGcP3+eHDlysGjRIho3bkzp0qWpVq0aVatWpXbt2v+o26ZNG8aNG0f16tWpUKHCNZeZ+vbtS/Xq1alduzbTp0//q7xjx45ERkZSo0YNRIS3336bIkWKsH379ps6H0ntF6Bp06YsWLCAcuXKUapUKWJiYpJMMDVq1KBWrVpUqVKFMmXK/HUJLP493XXXXRQtWpRffvmFKVOm0K1bNy5evAjA66+/zm233XZT70PsNlqXsLAw9eWEY6rK2t9PMDliH/N+/RNVpXWVIjzSuDR1Q/Pb5TOTqrZt20alSpV8HYbJYBL7uRGRtaoaltj2NthlOiEihIWGEBYawoGT55kW+TszVv/Bj1v+pMqtwTzSuDRtaxQle4C/r0M1xhiP2Fhk6VCxfDl48a6KrHypJW92rMaluKs89+VGGv/vZ4Yv3MmRWBti3RiT/lkLJh3Lkc2fB+uXpFu9EizffYzJEfsY+dMuxi7ezb3Vb+WRxqFUL57P12GaDCqpO66MScyNdKdYgskARISm5QvRtHwh9h47yycr9vFl1H5mrT9AnVL5eaRxKG2qFCHA3xqkxjNBQUEcP37chuw3HomfDyYoKOi66lknv8PXnfzXK/bCZb6MimbKin38EXOO4vlz0De8DF3qlCBHNuunMcmzGS3N9UpqRsvkOvktwTgyWoKJd+Wq8tO2w4xbsod1f5ykQK5s9GoUSo+GoeTN6fnUpsYYcyMswXggoyaYeKrKmn0nGLt4N7/sOEoup/+mT5MyFMl7fc1aY4zxlCUYD2T0BONu26HTfLRkD3M2HcJPoGOtYvQNL0u5wmk314QxJmuwBOOBzJRg4u2POceEZb/x+Zr9XLpylVaVb6Ffs7LUKum1+deMMVmMJRgPZMYEE+/YmYt8smIfn6zYx+kLcTQoE0L/5uUIL1/Q7iAyxtwUSzAeyMwJJt6Zi3F8vvoPJizby5+nL1C5aDD9mpfl7qp2i7Mx5sZYgvFAVkgw8S7FXeXbDQcYt2QPvx09S8mQnPRvXpZOtYuTLcASjTHGc5ZgPJCVEky8q1eVhdsOM+aX3WyMPkWxfDkYdHs5SzTGGI9ZgvFAVkww8VSVJTuPMmLRLjbsP2mJxhjjMUswHsjKCSZeYolmYItydK5jicYYkzhLMB6wBPM3SzTGGE9ZgvGAJZh/UlWW7jrG+wt3WqIxxiTKEowHLMEkLT7RjFi0k/V/uBLNgBZl6VKnhCUaY7I4SzAesASTMlVl2a5jvG+JxhjjsATjAUswnotPNCMW7WSdk2gG3+66dGYPbBqTtViC8YAlmOunqizffYzhC10tmjIFc/FsqwrcVbUIfn42BI0xWUFyCcb+3TQ3LH6mzW/6N+LjHmEE+vsx8LN1tB8dwdKdR29oilVjTOZhCcbcNBHhzsq38MOTTRl+fw1OnLtEj0mrefDjVaz/44SvwzPG+IhdInPYJbLUczHuCp+v3s+HP+/i2JlLtKp8C8+1rsBtt+TxdWjGmFTmk0tkIjJJRI6IyBa3shoiEikim0VkjogEO+X1RGSD89ooIh3d6tRxtt8tIiPFGV9eRLKLyEynfJWIhLrV6Skiu5xXT2+9R5O47AH+9GwUypLnW/DsnbcRuec4bUYs5dkvNhJ94pyvwzPGpBGvtWBEJBw4A0xV1apO2RrgOVVdIiK9gdKq+m8RyQlcUtU4ESkKbARudb5fDTwJrAR+AEaq6o8iMgCorqr9RKQr0FFVHxCRECAKCAMUWAvUUdVkr9VYC8Z7Tpy9xNgle5iyYh8odG9QkoEtylEwd3Zfh2aMuUk+acGo6lIgJkFxBWCps7wQ6ORse05V45zyIFyJASfZBKtqpLoy4VSgg7Nde+ATZ/kroKXTumkNLFTVGCepLATapPLbM9chf65s/OvuSix5vjmd6hRjauTvNHv7F4Yv3Enshcu+Ds8Y4yVp3cm/BWjnLHcBSsSvEJH6IvIrsBno5yScYkC0W/1opwzn634AZ9tTQAH38kTqGB8qmjcH/72vOgueDqd5hcKM/GkX4W//woRlv3Hh8hVfh2eMSWVpnWB6AwNFZC2QB7gUv0JVV6lqFaAu8JKIBAGJPUwRf00vqXXJ1bmGiPQVkSgRiTp69Oh1vA1zM8oWys3o7rWZM6gJVYvl5fXvt9HyvSXM3njQbm02JhNJ0wSjqttVtZWq1gFmAHsS2WYbcBaoiqv1UdxtdXHgoLMcjdMCEpEAIC+uS3J/lSdSJ+GxxqtqmKqGFSpU6GbemrkB1YrnZVqf+kx/tD55cwTyxIz1dByzgrW/J7yyaozJiNI0wYhIYeerHzAEGOd8X9pJEohIKVx9NftU9RAQKyINnP6VHsB3zu5mA/F3iHUGfnb6aeYDrUQkv4jkB1o5ZSadalyuIHMGN+GdztU5dOo8ncZGMmD6Wn4/ftbXoRljbkKAt3YsIjOA5kBBEYkGhgK5RWSgs8k3wGRnuQnwoohcBq4CA1T1mLOuPzAFyAH86LwAJgLTRGQ3rpZLVwBVjRGR14A1znavqqr9S5zO+fsJXcJKcE/1ony8dC/jluxh4dbD9GwYyuDby5M3Z6CvQzTGXCd70NJhtymnL0dOX+C9BTv5Yu1+1+Wz28vzUINSNmqzMemMjUVmMpzCwUG81bk63w9uStVb8/Lq3K20HrGU+b/+aTcCGJNBWIIx6VrlW4OZ1qcek3vVxd9PeHzaWh4Yv5JN0Sd9HZoxJgWWYEy6JyK0qFiYeU825fUOVdlz5AztRkXw9MwNHDx53tfhGWOSYH0wDuuDyThiL1xmzOI9TFy+FwEebVqa/s3LkTu71+5ZMcYkwfpgTKaSJyiQF9pU5Odnm9GmahFG/7KH299dzKz10dY/Y0w6YgnGZFjF8+fkg661mDWgEUXzBvH0zI10HhfJlgOnfB2aMQZLMCYTqFUyP7MGNObtztX5/fhZ2o5azkvfbOb4mYu+Ds2YLM0SjMkU/PyE+8NK8PNzzenTuDRfRu2nxbuLmRKxl7grV30dnjFZkiUYk6kEBwUy5N7KzHuqKTVK5GPYnK3cM3I5K/YcS7myMSZVWYIxmVK5wnmY2rseHz1ch7OX4njw41UMnL6OA3ZbszFpxhKMybREhNZVirDomWY8c+dt/LT9MC3fW8wHi3bZ/DPGpAFLMCbTCwr054mW5fnp2ea0rHQL7y/ayR3DlzBviw07Y4w3WYIxWUaxfDkY/WBtZjzWgNzZA+j36Voenria3UdifR2aMZmSJRiT5TQsW4C5g5vwn3ZV2BR9kjYjlvHG91s5ezHO16EZk6lYgjFZUoC/Hz0bhbL4+RZ0CSvOx8v2OpfNDtllM2NSiSUYk6WF5MrGf++rztf9G5EvZzb6fbqO3lPWsD/mnK9DMybDswRjDFCnVH7mDGrMkHsqsXpvDHcMX8LoX3ZzKc4e0jTmRlmCMcYR4O/Ho03LsOjZZrSsVJh35u/grg+W2kOaxtwgSzDGJFA0bw7GdK/D5EfqcvmK8uDHq3h65gaOxtrYZsZcD0swxiShRYXCLHg6nMG3l2PupoO0fG8x01b+zpWrdhOAMZ6wBGNMMoIC/Xm2VQXmPRVO1WJ5+fe3W7hv7AqbEsAYD1iCMcYDZQvlZvqj9fmga00OnDhHu1HLGTb7V2IvXPZ1aMakW5ZgjPGQiNC+ZjF+erY53euX4pPIfbR8bwlzNh60Z2eMSUSKCUZEuohIHmd5iIh8IyK1vR+aMelT3hyBvNahKt8OaEzh4OwMnrGeXpPt2RljEvKkBfNvVY0VkSZAa+ATYKx3wzIm/atRIh/fDWzC0LaVidoXQ6v3lzJx+V67CcAYhycJJn5c83uAsar6HZDNeyEZk3H4+wmPNC7Ngmea0aBMCK/N3cp9YyLYdui0r0Mzxuc8STAHROQj4H7gBxHJ7kk9EZkkIkdEZItbWQ0RiRSRzSIyR0SCnfI7RWStU75WRG53q1PHKd8tIiNFRJzy7CIy0ylfJSKhbnV6isgu59XT47NhzA0qli8Hk3rVZWS3WkSfOE/bD5fz7vwdNu+MydI8STD3A/OBNqp6EggBnveg3hSgTYKyCcCLqloNmOW2n2NAW6e8JzDNrc5YoC9Q3nnF77MPcEJVywHvA28BiEgIMBSoD9QDhopIfg/iNeamiAjtatzKomea0b5mMUb9spu7P1jGyt+O+zo0Y3wiyQQjIlEi8gEQDvygqrsAVPWQqi5IacequhSISVBcAVjqLC8EOjnbrlfVg075r0CQ00IpCgSraqS6btOZCnRwtmuPqz8I4CugpdO6aQ0sVNUYVT3hHCdhojPGa/LnysZ799dgWp96XL56la7jV/LSN5s5dd5uaTZZS3ItmAa4WhnNgSUi8oOIPCkit93E8bYA7ZzlLkCJRLbpBKxX1YtAMSDabV20U4bzdT+AqsYBp4AC7uWJ1LmGiPR1EmnU0aNHb+gNGZOUpuULMf+pcPqGl2Hmmj+405kOwJisIskEo6pxqrpYVV9U1fq4LknFAq+LyHoRGXMDx+sNDBSRtUAe4JL7ShGpgutS1+PxRYmFlsK65OpcW6g6XlXDVDWsUKFCHoRvzPXJmS2Af91die8GNqFg7uz0+3Qdj0+L4vDpC74OzRiv8/hBS+fS2CRVvR+oA0y/3oOp6nZVbaWqdYAZwJ74dSJSHFeLqYeqxpdHA8XddlEcOOi2roRTNwDIi+uS3F/lidQxxieqFc/Ld4Ma80KbiizecZQ73lvCZ6v+4Krd0mwysYCkVojIHJL4zx9AVdsltS6ZfRZW1SMi4gcMAcY55fmA74GXVDXC7RiHRCRWRBoAq4AewIfO6tm4bgiIBDoDP6uqish84E23jv1WwEvXG6sxqS3Q34/+zctyV9UivPTNZv41azPfrj/AfztVo2yh3L4Oz5hUJ0kNcSEizZKrqKpLkt2xyAxc/TcFgcO47uzKDQx0NvkGV0JRERmCKwnscttFKycZheG6Iy0H8CMw2KkThOtus1q4Wi5dVfU359i9gX85+3lDVScnFytAWFiYRkVFpbSZMalCVfkyKprXv9/KhctXefKO8jweXoYAfxu9yWQsIrJWVcMSXefJGEoikg2I79zfoaqZ7nYYSzDGF47EXmDY7F/5YfOfVCuWl3e6VKdikWBfh2WMx5JLMJ48MNkcV8tiNDAG2Cki4akZoDFZVeE8QYzpXofRD9bm4EnXA5of/rSLy1dsqmaT8XnSHn8P1+WqZqoajus5k/e9G5YxWcs91Yuy4OlwWlcpwnsLd9LRhpsxmYAnCSZQVXfEf6OqO4FA74VkTNZUIHd2Rj1Ym7Hda/PnqQu0G7WckdaaMRmYJwkmSkQmikhz5/UxsNbbgRmTVd1VrSgLnm5Gm6pFGb5wJx1GR7D1oLVmTMbjSYLpj2v4lieAJ4GtQD9vBmVMVheSKxsfdqvFuIdqc/i0qzUzYtFOLsVZa8ZkHB7dRZYV2F1kJr06cfYSw+b8yncbDlKpaDDvdqlOlVvz+josY4Cbv4vsXmdomBgROe08+GjtdWPSSP5c2figay0+ergOR2Mv0n5UBO8vtNaMSf88uUQ2AtcT8wVUNVhV86iq3ahvTBprXaUIi54Jp22NW/ngp120G7WcLQdO+TosY5LkSYLZD2xRu5ZmjM/ly5mN9x+oycc9wjh+9hLtR0cwfMEOa82YdCnJscjc/B+umSyXABfjC1V1uNeiMsYk687Kt1A3ND+vzt3KyJ93s2DrYd5/oCaVitrFBZN+eNKCeQM4BwThGmI//mWM8aF8ObMx/P6aTOgRxrEzrr6ZcUv2cMVGaDbphCctmBBVbeX1SIwxN+SOyrcwv2Q4L8/awv9+3M6irYd57/4alCqQy9ehmSzOkxbMIhGxBGNMOlYgd3bGPlSb9x+owY7Dsdz1wTI+W/UH1nVqfMmTBDMQmCci5+02ZWPSLxGhY63izH8qnFol8/GvWZt5ZMoajtjsmcZHUkwwzm3Jfqqaw25TNib9uzVfDqb1rs+wtpVZ+dtxWo1YytxNNqmrSXs2u5ExmZCfn9CrcWm+f6IppQrkYtBn63lixnpOnrvk69BMFmIJxphMrGyh3HzdryHP3HkbP2w+ROsRS1m686ivwzJZhCUYYzK5AH8/nmhZnlkDGpMnKJAek1bz72+3cO5SnK9DM5mcRwlGRJqIyCPOciERKe3dsIwxqa1a8bzMHdyER5uU5tNVv3P3B8tY+/sJX4dlMjFPBrscCrwAvOQUBQKfejMoY4x3BAX6M+Teynz2aAMuX1G6jFvBO/O321Azxis8acF0BNoBZwFU9SD2JL8xGVrDsgWY91RTOtUuzuhf9tBxTAS7j5zxdVgmk/EkwVxyBrpUABGxx4ONyQTyBAXyTpcafPRwHQ6ePM+9Hy5j+qrf7eFMk2o8STBfiMhHQD4ReQxYBEzwbljGmLTSukoR5j0VTt3QEF6etYXHpq7l+JmLKVc0JgUezWgpIncCrQAB5qvqQm8HltZsRkuT1V29qkxesY+3ftxO3pyBvNelBuG3FfJ1WCadu9kZLd9S1YWq+ryqPqeqC0XkrdQP0xjjS35+Qp8mpfluUGPy53TdzvzqnK1cuHzF16GZDMqTS2R3JlJ2V2oHYoxJHyoVDWb2oCb0ahTKpIi9dBgdwY4/Y30dlsmAkkwwItJfRDYDFURkk9trL7AppR2LyCQROSIiW9zKaohIpIhsFpE5IhLslBcQkV9E5IyIjEqwnzrO9rtFZKSIiFOeXURmOuWrRCTUrU5PEdnlvHpe91kxJosLCvRnWLsqTO5Vl2NnLtJ21HKmROy1GwDMdUmuBfMZ0BaY7XyNf9VR1Yc82PcUoE2CsgnAi6paDZgFPO+UXwD+DTyXyH7GAn2B8s4rfp99gBOqWg54H3gLQERCgKFAfaAeMFRE8nsQrzEmgRYVCzPvqXCalCvIsDlbeWTKGo7G2g0AxjNJJhhVPaWq+1S1m6r+DpzHdatybhEpmdKOVXUpEJOguAKw1FleCHRytj2rqstxJZq/iEhRIFhVI51bpacCHZzV7YFPnOWvgJZO66Y1sFBVY1T1hHOchInOGOOhgrmzM7FnGK+1r0LknuO0GbGUn7cf9nVYJgPwpJO/rYjsAvYCS4B9wI83eLwtuB7aBOgClEhh+2JAtNv30U5Z/Lr9AKoaB5wCCriXJ1LnGiLSV0SiRCTq6FEbANCYpIgIDzcMZe7gJhQODqL3lChe+W6L3QBgkuVJJ//rQANgp6qWBloCETd4vN7AQBFZi2s0gJTGDpdEyjSFdcnVubZQdbyqhqlqWKFCdjumMSkpf0sevh3YiMealmZq5O/c++Fyfj14ytdhmXTKkwRzWVWPA34i4qeqvwA1b+RgqrpdVVupah1gBrAnhSrRQHG374sDB93WlQAQkQAgL65Lcn+VJ1LHGHOTsgf48/I9lZnWpx6nz1+m4+gVTFj2G1ev2g0A5lqeJJiTIpIbV9/JdBH5ALihcb5FpLDz1Q8YAoxLbntVPQTEikgDp3+lB/Cds3o2EH+HWGfgZ6efZj7QSkTyO537rZwyY0wqalq+EPOeCqdZhUK8/v02+nyyxkYAMNdI8Ul+Z+yx87iSUXdcLYXpTqsmuXozgOZAQeAwrju7cgMDnU2+AV5ykgIisg8IBrIBJ4FWqrpVRMJw3ZGWA1ffz2BVVREJAqYBtXC1XLqq6m/OvnoD/3KO84aqTk7pRNiT/MbcGFVl2srfef37beTLEciIrjVpVLagr8MyaSS5J/mTTTAi4o9raJg7vBVcemEJxpibs/XgaQbNWMfeY2cZ1KIcT7YsT4C/zWmY2d3wUDGqegU4JyJ5vRKZMSbTqHxrMHMHN6FLneJ8+PNuuo5fyYGT530dlvEhT/69uABsFpGJzpP0I0VkpLcDM8ZkPDmzBfB25xp80LUm2/+M5e4PljFvy5++Dsv4SIAH23zvvIwxxiPtaxajZol8DJ6xnn6fruXhBqV4+Z5KBAX6+zo0k4Y8STD7gZWqes7bwRhjMo9SBXLxVb9GvDN/Ox8v28uafTGMerAW5QrbhLhZhSeXyHoBG5xBKt92nuy3sb2MMSnKFuDHy/dUZvIjdTkSe5G2H0bwRdR+GzQzi0gxwahqD1W9Dde4YdHAaMDGVTHGeKxFhcL8+GRTapXMx/99tYknP99A7IXLvg7LeJknY5E95EyZ/BVwBzAKaOrtwIwxmcstwUFM61Of51rdxvebD3HPyOVs3H/S12EZL/LkEtkIXEPDfAw8oapvq2qkN4MyxmRO/n7CoNvLM7NvA65cVTqNXcHHS22YmczKk0tkBXENUhkEvCEiq0VkmtcjM8ZkWmGhIfzwRFNaVirMGz9so/cna4g5m9LYtyaj8eQSWTBQEigFhOIaKuaqd8MyxmR2eXMGMu6hOrzWvgordh/nnpHLWPt7wimkTEbmySWy5bhmstwEPKCqFVTVpiE2xty0+HlmvhnQiEB/Px74aCXjl+6xu8wyCU8ukVVX1QHAHFyDUBpjTKqqWiwvc59owp2Vb+HNH7bz2NQoTp6zS2YZnSeXyKqKyHpcs1FuFZG1IlLV+6EZY7KS4KBAxnSvzbC2lVmy8yj3jFzO+j9O+DoscxM8uUQ2HnhGVUupakngWafMGGNSlYjQq3FpvurXCBG4/6NIJi7fa5fMMihPEkwuZxZLAFR1MZDLaxEZY7K8GiXy8f3gpjSvUJjX5m6l36drOXXeHszMaDxJML+JyL9FJNR5DQH2ejswY0zWljdnIOMfrsOQeyrx07Yj3PvhMjZFn/R1WOY6eJJgegOFcM1AOctZfsSbQRljDLgumT3atAxf9GvI1avQaewKpkTYJbOMIsUpk7MKm9HSmPTt5LlLPPvFRn7afoS7qxXhf52qExwU6OuwsrzkZrRMcrh+EZkDJJl9VLVdKsRmjDEeyZczGx/3COPjZb/x9vwd/HpwOaMfrE3VYjbhbnqV3Hww76ZZFMYY4wE/P+HxZmWpUyo/gz5bz31jVvBK28p0r18SEfF1eCaB5BLMXlX9I80iMcYYD4WFhvDDk015euYGhny7hdV7Y/jvfdXIld2TORRNWkmuk//b+AUR+dr7oRhjjOdCcmVjcq+6PN+6AnM3HaTD6Ah2Hznj67CMm+QSjHt7s4y3AzHGmOvl5ycMbFGOaX3qE3P2Eu1HLef7TYd8HZZxJJdgNIllY4xJVxqXK8jcJ5pwW5E8DPxsHa/N3crlKzbou68ll2BqiMhpEYkFqjvLp0UkVkROp1WAxhjjiaJ5czCzb0N6NQpl4vK9PPjxSg6fvuDrsLK0JBOMqvqrarCq5lHVAGc5/vvgtAzSGGM8kS3Aj2HtqvBB15psOXCae0YuZ+Vvx30dVpblyZP8N0REJonIERHZ4lZWQ0QiRWSziMxxJjOLX/eSiOwWkR0i0tqtvI6z/W4RGSnOvYgikl1EZjrlq0Qk1K1OTxHZ5bxs7hpjspj2NYvx3aDGBOcIoPuEVXy0xOaY8QWvJRhgCtAmQdkE4EVVrYZr2JnnAUSkMtAVqOLUGSMi/k6dsUBfoLzzit9nH+CEqpYD3gfecvYVAgwF6gP1gKEikt8L788Yk47ddkseZg9qQusqt/DfH7fT79O1nL5gA2amJa8lGFVdCiSc/7QCsNRZXgh0cpbbA5+r6kVV3QvsBuqJSFEgWFUj1fXvx1Sgg1udT5zlr4CWTuumNbBQVWNU9YRznISJzhiTBeTOHsDoB2sz5J5KLNp2hPajItj+p3UhpxVvtmASswWIH2KmC1DCWS4G7HfbLtopK+YsJyy/po6qxgGngALJ7OsfRKSviESJSNTRo0dv8C0ZY9Kz+AEzZzzWgLMX4+gwOoJZ66NTrmhuWlonmN7AQBFZC+QB4udETWyMB02m/EbrXFuoOl5Vw1Q1rFChQskGbozJ2OqVDmHuE02oUTwfT8/cyJBvN3Mx7oqvw8rU0jTBqOp2VW2lqnWAGcAeZ1U0f7dmAIoDB53y4omUX1NHRAKAvLguySW1L2NMFlc4TxDTH63P4+Fl+HTlH9z/0UoOnDzv67AyrTRNMCJS2PnqBwwBxjmrZgNdnTvDSuPqzF+tqoeAWBFp4PSv9AC+c6sTf4dYZ+Bnp59mPtBKRPI7nfutnDJjjCHA34+X7q7EuIdqs+fIGe4duYxlu+wSuTd48zblGUAkUEFEokWkD9BNRHYC23G1KiYDqOqvwBfAVmAeMFBV49uu/XHdfbYbV4vnR6d8IlBARHYDzwAvOvuKAV4D1jivV50yY4z5S5uqRZk9qDGF8wTRc9Jqxi62W5lTm0045rAJx4zJms5diuP/vtrE3E2HuLtaEd7uXIPcNiqzx5KbcCytO/mNMSZdyZktgA+71eJfd1dk3pY/6Tg6gr3Hzvo6rEzBEowxJssTEfqGl2Van/ocO3ORdh8u56dth30dVoZnCcYYYxyNyxVkzuAmlCqYkz6fRDFi0U6uXrVuhBtlCcYYY9wUz5+Tr/o14r7axRixaBd9p0XZEDM3yBKMMcYkEBToz3tdavCfdlVYvOMoHUZFsOtwrK/DynAswRhjTCJEhJ6NQvnssQacvuAaYubHzTZb5vWwBGOMMcmoVzqEuYObUP6WPPSfvo635m3nivXLeMQSjDHGpKBI3iBmPt6AbvVKMnbxHnpNXs3Jc5dSrpjFWYIxxhgPZA/w57/3VeN/91Vj1W8xtB21nK0Hbej/5FiCMcaY69C1XklmPt6Ay3HKfWMj+G7DAV+HlG5ZgjHGmOtUq2R+5gxuQvVi+Xjy8w28NncrcVeu+jqsdMcSjDHG3IBCebIz/bH69GoUysTle+k1eY31yyRgCcYYY25QoL8fw9pV4e1O1Vm9N4Z2oyLYac/L/MUSjDHG3KT765ZgRt8GnL98hY6jI5j/65++DildsARjjDGpoE6p/MwZ1IRyhXPz+LS1fLBoV5Yfx8wSjDHGpBLX8zINua9WMd5ftJMB09dx9mKcr8PyGUswxhiTioIC/Xnv/hoMuacSC7b+SaexK/jj+Dlfh+UTlmCMMSaViQiPNi3DlEfqcfDkedqNXs6K3cd8HVaaswRjjDFeEn5bIWYPakLB3Nl5eNJqpkTsJStNU28JxhhjvCi0YC5mDWhEiwqFGTZnKy98vYmLcVd8HVaasARjjDFelicokPEP1+GJ28vxRVQ03cav5MjpC74Oy+sswRhjTBrw8xOeaVWBMd1rs+1QLO1GRbBx/0lfh+VVlmCMMSYN3V2tKF/3b0SAv9Dlo0i+WRft65C8xhKMMcakscq3BjN7UBNql8zHM19s5I3vt2bKScwswRhjjA+E5MrGtD716dGwFB8v28ujn6wh9sJlX4eVqryWYERkkogcEZEtbmU1RWSliGwQkSgRqeeUZxORySKyWUQ2ikhztzp1nPLdIjJSRMQpzy4iM53yVSIS6lanp4jscl49vfUejTHmZgT6+/Fq+6q83qEqS3cd474xmeuhTG+2YKYAbRKUvQ38R1VrAq843wM8BqCq1YA7gfdEJD62sUBfoLzzit9nH+CEqpYD3gfeAhCREGAoUB+oBwwVkfyp/N6MMSbVPNSgFNN61+NI7EXaj17Oyt+O+zqkVOG1BKOqS4GYhMVAsLOcFzjoLFcGfnLqHQFOAmEiUhQIVtVIdT2dNBXo4NRpD3ziLH8FtHRaN62Bhaoao6ongIX8M9EZY0y60qhcQb4b2JiQXNl4aMIqZqz+w9ch3bS07oN5CnhHRPYD7wIvOeUbgfYiEiAipYE6QAmgGOB+i0W0U4bzdT+AqsYBp4AC7uWJ1DHGmHQrtGAuvhnQmEblCvLSN5v5z5xfM/RMmWmdYPoDT6tqCeBpYKJTPglXIogCRgArgDhAEtlH/K0WSa1Lrs41RKSv0xcUdfToUU/fgzHGeE3eHIFM6hnGI41DmRyxj96fRHHqfMbs/E/rBNMT+MZZ/hJXHwmqGqeqT6tqTVVtD+QDduFKOsXd6hfn78tq0bhaOYhIAK5LbjHu5YnUuYaqjlfVMFUNK1So0M2/O2OMSQUB/n4MbVuF/95XjRW7j9FxTAR7j531dVjXLa0TzEGgmbN8O64kgojkFJFczvKdQJyqblXVQ0CsiDRw+ld6AN859WfjSlgAnYGfnX6a+UArEcnvdO63csqMMSZD6VavJJ8+Wp8TZy/RYXREhhuR2Zu3Kc8AIoEKIhItIn1w3S32nohsBN7EdXcYQGFgnYhsA14AHnbbVX9gArAb2AP86JRPBAqIyG7gGeBFAFWNAV4D1jivV50yY4zJcBqUKcB3A5tQOI9rROZpK3/3dUgek6w0dHRywsLCNCoqytdhGGNMomIvXOaJGev5ZcdRejQsxSv3VibA3/fPyovIWlUNS2yd76MzxhiTojxBgUzoWZfHmpZmauTv9Jq8hlPn0nfnvyUYY4zJIPz9hJfvqczbnauzau9xOoyJYM/RM74OK0mWYIwxJoO5P6wEnz3WgFPnL9NxdATLdqXPxywswRhjTAZUNzSE7wY2pmjeHPSavIZP02HnvyUYY4zJoEqE5OSr/g0JL1+QId9u4bW56WvYf0swxhiTgeUJCuTjHmH0ahTKxOV7eXxaFGcvxvk6LMASjDHGZHgB/n4Ma1eFV9tX4eftR+g8LpKDJ8/7OixLMMYYk1n0aBjKpF512R9zjg6jI9gcfcqn8ViCMcaYTKR5hcJ83b8Rgf5+dPloBfO2HPJZLJZgjDEmk6lQJA/fDmxMxSLB9Pt0HWMX78EXo7ZYgjHGmEyoUJ7sfN63AfdWL8pb87bzwtebuBSXtnPLBKTp0YwxxqSZoEB/RnatRZmCuRj58272x5xn7EO1yZczW5oc31owxhiTifn5Cc+0qsDw+2uw9vcT3DdmRZrNLWMJxhhjsoD7ahdn+mP1OXHuEh3HRLDyt+NeP6YlGGOMySLqhobw7cDGFMiVjYcnruKrtdFePZ4lGGOMyUJKFcjFN/0bU690CM99uZG3523nqpeGl7EEY4wxWUzenIFMeaQe3eqVYMziPQyasc4rY5jZXWTGGJMFBfr78WbHapQpmJvTFy7j7yepfgxLMMYYk0WJCI+Fl/Ha/u0SmTHGGK+wBGOMMcYrLMEYY4zxCkswxhhjvMISjDHGGK+wBGOMMcYrLMEYY4zxCkswxhhjvEJ8MctZeiQiR4HffR1HMgoCx3wdRDIsvptj8d0ci+/m3Ex8pVS1UGIrLMFkECISpaphvo4jKRbfzbH4bo7Fd3O8FZ9dIjPGGOMVlmCMMcZ4hSWYjGO8rwNIgcV3cyy+m2Px3RyvxGd9MMYYY7zCWjDGGGO8whKMMcYYr7AEk86ISAkR+UVEtonIryLypFM+TEQOiMgG53W3D2PcJyKbnTiinLIQEVkoIrucr/l9FFsFt3O0QUROi8hTvjx/IjJJRI6IyBa3siTPl4i8JCK7RWSHiLT2UXzviMh2EdkkIrNEJJ9THioi593O4zgfxZfk55nW5y+ZGGe6xbdPRDY45Wl6DpP5m+L9n0FVtVc6egFFgdrOch5gJ1AZGAY85+v4nLj2AQUTlL0NvOgsvwi8lQ7i9Af+BEr58vwB4UBtYEtK58v5rDcC2YHSwB7A3wfxtQICnOW33OILdd/Oh+cv0c/TF+cvqRgTrH8PeMUX5zCZvyle/xm0Fkw6o6qHVHWdsxwLbAOK+TYqj7QHPnGWPwE6+C6Uv7QE9qiqT0doUNWlQEyC4qTOV3vgc1W9qKp7gd1AvbSOT1UXqGqc8+1KoLg3Y0hOEucvKWl+/iD5GEVEgPuBGd6OIzHJ/E3x+s+gJZh0TERCgVrAKqdokHPJYpKvLkE5FFggImtFpK9TdouqHgLXDzRQ2GfR/a0r1/5Sp5fzB0mfr2LAfrftovH9Pxi9gR/dvi8tIutFZImINPVVUCT+eabH89cUOKyqu9zKfHIOE/xN8frPoCWYdEpEcgNfA0+p6mlgLFAWqAkcwtXk9pXGqlobuAsYKCLhPowlUSKSDWgHfOkUpafzlxxJpMxnzxKIyMtAHDDdKToElFTVWsAzwGciEuyD0JL6PNPV+XN049p/dHxyDhP5m5LkpomU3dA5tASTDolIIK4fhOmq+g2Aqh5W1SuqehX4mDRo9idFVQ86X48As5xYDotIUQDn6xFfxee4C1inqochfZ0/R1LnKxoo4bZdceBgGscGgIj0BO4Fuqtzcd65bHLcWV6L6/r8bWkdWzKfZ7o5fwAiEgDcB8yML/PFOUzsbwpp8DNoCSadca7XTgS2qepwt/Kibpt1BLYkrJsWRCSXiOSJX8bVGbwFmA30dDbrCXzni/jcXPNfY3o5f26SOl+zga4ikl1ESgPlgdVpHZyItAFeANqp6jm38kIi4u8sl3Hi+80H8SX1eaaL8+fmDmC7qkbHF6T1OUzqbwpp8TOYVncy2MvjOz6a4GqObgI2OK+7gWnAZqd8NlDUR/GVwXWHyUbgV+Blp7wA8BOwy/ka4sNzmBM4DuR1K/PZ+cOV6A4Bl3H9d9gnufMFvIzrv9odwF0+im83ruvw8T+D45xtOzmf+0ZgHdDWR/El+Xmm9flLKkanfArQL8G2aXoOk/mb4vWfQRsqxhhjjFfYJTJjjDFeYQnGGGOMV1iCMcYY4xWWYIwxxniFJRhjjDFeYQnGZDjOaLSp8hyLiDQXkUYebrtPRAqmsE0vEbk1lWIrJCLLRWSLiHRwK/8uqWOISD8R6ZEax09rqXnuTPpgCcZkdc0BjxKMh3oBqfVHshuuQQgbAs8DiEhbXCMUJPpktaqOU9WpN3vg+AcB01gvUu/cmXTAEozJqPxF5GNnfosFIpIDQETKisg8ZyDOZSJS0SlvKyKrnAEGF4nILc7Af/2Ap515Oa4ZdFBECjj7Xi8iH+GM0ZSwBSUiz4lrfpLOQBgw3dnfPSIyy227O0XkGzx3GciBa9j0q86wI08B7yRVwYnjOWd5sYi8JSKrRWRn/PsTEX8ReVdcc/psEpHBTvk+EXlFRJYDXUSklYhEisg6EfnSGcsqfrs3nXVRIlJbROaLyB4R6ecWy/MissY5xn/czt22hJ9dIucux3WcJ5NOWYIxGVV5YLSqVgFO4no6GmA8MFhV6wDPAWOc8uVAA3UNMPg58H+qug8YB7yvqjVVdVmCYwwFljt1ZgMlkwtIVb8ConCN3VUT+AGoJCKFnE0eASZfx3v8DGgNzMM1/8kAYKq6Dd3igQBVrYcrMQ11yvrimuejlqpW5++BLAEuqGoTYBEwBLhDXQObRuEamDHeflVtCCzD9bR6Z6AB8CqAiLTC9RnVwzUgZR35e1DUf3x2Cc+dqp6/jvdo0qkAXwdgzA3aq6obnOW1QKjzH3Yj4EvX8EuA679/cA3YN9MZwyobsNeDY4TjGqgQVf1eRE5cT4CqqiIyDXhIRCbjutTlcf+Iqp4C7gEQ13D0LwD3icjHQH7gPVWNTGE38S2mtbgmugLX+Fjj1JnvRVXd5zGJH5SxAa6JpyKcc5kNcD/WbOfrZiC3uuYZiRWRC+Ka/bKV81rvbJcbV2L5g0Q+uxTeg8mgLMGYjOqi2/IVXJeS/ICTTushoQ+B4ao6W0Sa42oReCKxsZTiuLb1H5RM/cnAHOAC8KX+PYkXACJSH/jI+fYVVZ1N4l4B3sDVL7MWV+vmO6BFCvHHn6cr/P37LiQ9/PpZt20Wqmq3FPZ7lWs/i6vOcQT4r6p+5F7JuSyZ2GdnMiG7RGYyDXXNcbFXRLqAaxRZEanhrM4LHHCWe7pVi8U1jWxilgLdnX3dhavVAHAYKOz00WTHNaR9ovtzOuMP4rrcNCWRmFc5l4RqJpVcRKQ8cKuqLsE1kOdVXAkiucSWnAVAP6dPBxEJSWSblUBjESnnbJNTRK5nSPn5QG+3fptiIpLSJHTJfRYmA7IEYzKb7kAfEYkf7bm9Uz4M16WzZcAxt+3nAB0T6+QH/gOEi8g6XJd7/gBQ1cu4+hpWAXOB7W51pgDjEnRUT8fVZ7H1Bt/TG7gSFLhG7e2FKwG8e4P7m4DrvWxyztODCTdQ1aPOcWaIyCbneBU9PYCqLsDVyooUkc3AV6ScPKbwz3NnMjAbTdkYLxORUcB6VZ3o61iMSUuWYIzxIhFZi6tf405VvZjS9sZkJpZgjDHGeIX1wRhjjPEKSzDGGGO8whKMMcYYr7AEY4wxxisswRhjjPGK/weFeOE2S2pR4QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1935,7 +1935,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAArRklEQVR4nO3dd3yV5f3/8dcnA8KGDEKYYcneYSPgRK0DHFUcoLVF2mK1Fr+12ir+WjvcqxVFUbQOqMU9ClqZsoKEJVvCJiRhhU2S6/fHuUMjJiFATu6TnPfz8TiPc5879znnk+sk7/s+133f123OOUREJHxE+F2AiIiULwW/iEiYUfCLiIQZBb+ISJhR8IuIhJkovwsojfj4eJecnOx3GSIiFcrixYuznHMJJ8+vEMGfnJxMamqq32WIiFQoZrapqPnq6hERCTMKfhGRMKPgFxEJMxWij19ETs/x48fZunUrR44c8bsUKQcxMTE0btyY6OjoUi2v4BephLZu3UqtWrVITk7GzPwuR4LIOUd2djZbt26lefPmpXqOunpEKqEjR44QFxen0A8DZkZcXNxpfbtT8ItUUgr98HG6n3WlDv5F6bt5YcYGv8sQEQkplTr4P1+xk0f/s5pvNu/xuxQROQ3jx4/n9ddfL5PXSk5OJisrq8Rl/vznP3/vcb9+/crkvUtrxowZfP311ycel+XvX5RKHfy/vugcGtSO4YH3VpCbl+93OSJhyTlHfv7p/f+NHj2aESNG/GB+bm5uWZX1PScHf+EQLisl1X5y8Bf3+5eVSh38NatG8dAVHVi1Yz+vzk33uxyRsJGenk67du34xS9+Qffu3dmyZQuPPfYYPXv2pHPnzjz00EMnln399dfp3LkzXbp04ZZbbgFg3LhxPP744wAMHjyY+++/n0GDBvHMM8+waNEi+vXrR5cuXejVqxc5OTm89tprjBkz5sRrXn755cyYMeMHdQ0dOpQePXrQoUMHXnrpJQDuu+8+Dh8+TNeuXbnpppsAqFmzJhBYad1777107NiRTp06MXnyZCAQ1IMHD+baa6+lbdu23HTTTRR1NcOTa//oo4/o3bs33bp148ILLyQjI4P09HTGjx/PU089RdeuXZk9e/b3fv+0tDT69OlD586dGTZsGHv2nH0PRqU/nHNIh0QubFefJ6ev5bLOSTSqW83vkkTK1cMfreTb7fvL9DXbN6zNQ1d0KHGZNWvW8Oqrr/KPf/yDadOmsW7dOhYuXIhzjiuvvJJZs2YRFxfHI488wty5c4mPj2f37t1FvtbevXuZOXMmx44do23btkyePJmePXuyf/9+qlUr/f/0xIkTiY2N5fDhw/Ts2ZNrrrmGv/71rzz//POkpaX9YPmpU6eSlpbG0qVLycrKomfPngwcOBCAJUuWsHLlSho2bEj//v2ZO3cuAwYMKLZ2gD179jB//nzMjJdffplHH32UJ554gtGjR1OzZk3Gjh0LwJdffnni+SNGjOC5555j0KBBPPjggzz88MM8/fTTpf6di1Kpt/ghsLd73JWBP9BxH670uRqR8NGsWTP69OkDwLRp05g2bRrdunWje/furF69mnXr1vHf//6Xa6+9lvj4eABiY2OLfK3rr78eCKxMkpKS6NmzJwC1a9cmKqr026/PPvssXbp0oU+fPmzZsoV169aVuPycOXMYPnw4kZGRJCYmMmjQIBYtWgRAr169aNy4MREREXTt2pX09PQSa4fA+RVDhgyhU6dOPPbYY6xcWXIm7du3j7179zJo0CAARo4cyaxZs0r9+xan0m/xAzSuV527L2zNXz5bzbSVO7m4QwO/SxIpN6faMg+WGjVqnJh2zvG73/2OO+6443vLPPvss6U6FLHgtZxzRS4fFRX1vf0IRR3TPmPGDL744gvmzZtH9erVGTx48CmPfS+q+6ZA1apVT0xHRkYW24dfuB3uvPNO7rnnHq688kpmzJjBuHHjSnz/YKn0W/wFfjKgOW0b1GLchys5eDQ4O4hEpGhDhgxh4sSJHDhwAIBt27axa9cuLrjgAqZMmUJ2djZAsV09Bdq2bcv27dtPbHXn5OSQm5tLcnIyaWlp5Ofns2XLFhYuXPiD5+7bt4969epRvXp1Vq9ezfz580/8LDo6muPHj//gOQMHDmTy5Mnk5eWRmZnJrFmz6NWr1xm3w759+2jUqBEAkyZNOjG/Vq1a5OTk/GD5OnXqUK9ePWbPng3AG2+8cWLr/2yETfBHR0bwyLCObN93hKe/WOt3OSJh5eKLL+bGG2+kb9++dOrUiWuvvZacnBw6dOjAAw88wKBBg+jSpQv33HNPia9TpUoVJk+ezJ133kmXLl246KKLOHLkCP3796d58+Z06tSJsWPH0r179x8895JLLiE3N5fOnTvzhz/84UQ3FMCoUaPo3LnziZ27BYYNG3Zix/P555/Po48+SoMGZ95jMG7cOK677jrOPffcE91bAFdccQXvvffeiZ27hU2aNIl7772Xzp07k5aWxoMPPnjG71/ASvoqEypSUlJcWV2I5XdTlzMldQsfjRlA+4a1y+Q1RULNqlWraNeund9lSDkq6jM3s8XOuZSTlw2bLf4C913SlrrVorn/veXk5Yf+Sk9EpKyFXfDXqR7N7y9vR9qWvby9cLPf5YiIlLuwC36AoV0b0b9VHH/7fDW7cjReuVROFaEbV8rG6X7WYRn8ZsYfr+rI0eP5/OnjVX6XI1LmYmJiyM7OVviHgYLx+GNiYkr9nLA4jr8oLRJq8ovzWvL0F+u4LqUx57ZO8LskkTLTuHFjtm7dSmZmpt+lSDkouAJXaYXdUT2FHTmex6XPzMY5x+d3DyQmOrLM30NExC86qqcIMdGRPDK0I+nZh/jHV+v9LkdEpFyEdfAD9GsVz7BujXhh5gbW7zrgdzkiIkEX9sEPcP9l7agWHcnv31+unWEiUukp+IGEWlW579J2zP9uN1O/2eZ3OSIiQaXg99zQswndm9blkU9XsefgMb/LEREJmqAFv5nFmNlCM1tqZivN7GFvfqyZTTezdd59vWDVcDoiIoxHhnVi3+Hj/O3z1X6XIyISNMHc4j8KnO+c6wJ0BS4xsz7AfcCXzrnWwJfe45DQLqk2Px3QnHcWbWFResnDw4qIVFRBC34XUHCYTLR3c8BVQMFA1JOAocGq4UzcdWFrGtWtxgPvLedYri7QLiKVT1D7+M0s0szSgF3AdOfcAiDRObcDwLuvX8xzR5lZqpmllufZh9WrRPHwlR1Ym3GAV+ZsLLf3FREpL0ENfudcnnOuK9AY6GVmHU/juS8551KccykJCeU7nMKF7RMZ0iGRZ75cy5bdh8r1vUVEgq1cjupxzu0FZgCXABlmlgTg3e8qjxpO17grOxBpxh8+WKFj+0WkUgnmUT0JZlbXm64GXAisBj4ERnqLjQQ+CFYNZyOpTjXuHdKGGWsyeWP+Jr/LEREpM8EcnTMJmGRmkQRWMFOccx+b2TxgipndDmwGrgtiDWdlZL9kZq3L4k+frCKlWawu1SgilUJYj85ZGtkHjnLpM7OpGRPFx3cOoHqVsB3JWkQqGI3OeYbialbl6Ru6sjHrIA99sNLvckREzpqCvxT6tYxnzHmt+NfirXyQprF8RKRiU/CX0l0XtCalWT0eeG8Fm7IP+l2OiMgZU/CXUlRkBE/f0JUIgzvfXqKzekWkwlLwn4bG9arz6LWdWbZ1H49PW+N3OSIiZ0TBf5ou6ZjEzX2a8tKs75ixJiTPPRMRKZGC/wz8/kftadugFr+ZspRd+4/4XY6IyGlR8J+BmOhInhvejYPHcvn1lDTy80P/XAgRkQIK/jPUOrEW467owNz12bwwc4Pf5YiIlJqC/yxc37MJP+qcxJPT17J40x6/yxERKRUF/1kwM/5ydSeS6sTwq7eXsO/wcb9LEhE5JQX/WaodE81zw7uRsf8Iv5u6TEM4i0jIU/CXgW5N6zF2SBs+Xb6Ttxdu8bscEZESKfjLyKhzW3Bu63ge/mglazNy/C5HRKRYCv4yEhFhPPHjLtSKiWLMW99w+Fie3yWJiBRJwV+G6teK4ckfd2VtxgH++Mm3fpcjIlIkBX8ZG3hOAncMasFbCzbzybIdfpcjIvIDCv4gGHtxG7o0qct9U5exZfchv8sREfkeBX8QREdG8NwN3cAFhnA+mqv+fhEJHQr+IGkaFxjCOW3LXn77ro7vF5HQoeAPoks7JTH24nN4P207z3y5zu9yREQAiPK7gMrul+e1YmPWIZ7+Yh3JcTUY2q2R3yWJSJjTFn+QFYzn07t5LP/37jJS03f7XZKIhDkFfzmoEhXB+Jt70KheNUa9sVgXaxcRXyn4y0m9GlWYeGtP8p3jttcWse+QRvIUEX8o+MtR8/gavHhzD7bsPsTofy7mWG6+3yWJSBhS8Jez3i3i+OvVnZn3XTa/f3+5DvMUkXKno3p8cE2PxmzKPsiz/11P8/ia/HxwS79LEpEwouD3ya8vOoeN2Yf42+eraRZXncs6JfldkoiECXX1+MTMeOzaznRvWpdfT04jbctev0sSkTCh4PdRTHQkE0akUL92VX46KZWtezSgm4gEn4LfZ3E1qzJxZE+O5uZx+2up5BzRYZ4iElwK/hDQOrEWL9zUgw2ZBxjz1hJy83SYp4gEj4I/RAxoHc8fh3Zk5tpMHv7oWx3mKSJBo6N6QsjwXk1JzzrIi7O+o3l8DX4yoLnfJYlIJaTgDzG/vaQt6dkH+eMn39I0tjoXtk/0uyQRqWTU1RNiIiKMp6/vRqdGdfjVO0tYsW2f3yWJSCWj4A9B1apE8vKIFOpUi+b2SYs0mqeIlCkFf4iqXzuG127rxbHcfIa/NF8XbReRMhO04DezJmb2lZmtMrOVZnaXN3+cmW0zszTvdlmwaqjo2jSoxT9/2puDx/K44aX5OsFLRMpEMLf4c4HfOOfaAX2AX5pZe+9nTznnunq3T4NYQ4XXoWEd3vxpb3KOHGf4hPls33vY75JEpIILWvA753Y4577xpnOAVYAuOHsGOjaqwxu392bvwePcOGE+O/cd8bskEanAyqWP38ySgW7AAm/WGDNbZmYTzaxeMc8ZZWapZpaamZlZHmWGtC5N6jLp9l5kHTjGjRPms2u/wl9EzkzQg9/MagL/Bu52zu0HXgBaAl2BHcATRT3POfeScy7FOZeSkJAQ7DIrhO5N6/HabT3Zuf8IwyfMJzPnqN8liUgFFNTgN7NoAqH/pnNuKoBzLsM5l+ecywcmAL2CWUNlk5Icy6u39mT73iPc9PJ8sg8o/EXk9ATzqB4DXgFWOeeeLDS/8BVHhgErglVDZdW7RRyv3JrC5t2HuOnlBew+eMzvkkSkAgnmFn9/4Bbg/JMO3XzUzJab2TLgPODXQayh0urXMp6XR/RkY9ZBbn55AXsPKfxFpHSsIowCmZKS4lJTU/0uIyTNXJvJzyalnjjmv061aL9LEpEQYWaLnXMpJ8/XmbsV3KBzEnjxlh6s3rmfERMXsl8XchGRU1DwVwLnta3PP27qwcpt+xg5caGu4iUiJVLwVxIXtU/k+Ru7s2zrPm57dREHj+b6XZKIhCgFfyVySccGPHtDN5Zs2cttry3i0DGFv4j8kIK/kvlR5ySeur4rqem7uf21VA4fy/O7JBEJMQr+SujKLg154sddmL8xm5+9nqpuHxH5HgV/JTWsW2Mev7YLX2/IYviE+WTpDF8R8Sj4K7FrejRmwogU1mbkcM0LX5OepSt5iYiCv9K7oF0ib/+sDzlHcrn6ha9J27LX75JExGcK/jDQrWk93h3dlxpVIxn+0nz+uzrD75JExEcK/jDRIqEmU3/en1b1a/Kz1xfzzsLNfpckIj5R8IeRhFpVeWdUH/q3iue+qct55ot1VISxmkSkbCn4w0yNqlG8MjKFa7o35qkv1nL/e8vJzcv3uywRKUdRpV3QzLoA53oPZzvnlganJAm26MgIHr+uM0l1Ynj+q/Xs2n+U527sRvUqpf5zEJEKrFRb/GZ2F/AmUN+7/dPM7gxmYRJcZsbYIW3449COfLVmFzdOWKCreYmEidJ29dwO9HbOPeicexDoA/wseGVJebmlTzNeuLkHq3bs59rx89icfcjvkkQkyEob/AYUHvQlz5snlcCQDg1462e92XPoGFe/MJflW/f5XZKIBFFpg/9VYIGZjTOzccB8AtfTlUqiR7NY3h3dj6pRkVz/0jxmrNnld0kiEiSlCn7vYum3AbuBPcBtzrmng1iX+KBV/ZpM/UU/msXV4KeTUnl38Va/SxKRICgx+M2stncfC6QD/wTeADZ586SSSawdw5Q7+tC7RSxj/7WU5/+rY/1FKptTbfG/5d0vBlIL3QoeSyVUKyaaV2/txdCuDXl82lrGvLWEAxraWaTSKPHAbefc5d598/IpR0JFlagInrq+K22TavPo56tZm5HD+Ft60DKhpt+lichZKu1x/F+WZp5ULmbG6EEteeP23mQfPMZVz8/lPyt3+l2WiJylU/Xxx3h9+fFmVs/MYr1bMtCwXCoU3/VvFc9Hdw6gRUIN7nhjMY//Zw15+er3F6moTrXFfweB/vy23n3B7QPg78EtTUJJo7rVmHJHX65PacLzX63nttcWsefgMb/LEpEzYKU5YsPM7nTOPVcO9RQpJSXFpaZqX3KoeHvhZh76YCX1a1dl/M096Niojt8liUgRzGyxcy7l5PmlPY7/OTPraGY/NrMRBbeyL1MqguG9mjJldF/y8h3XvPC1jvcXqWBKu3P3IeA573Ye8ChwZRDrkhDXtUldPrpzAN2b1mPsv5byh/dXcCxXwzuLVASlHbLhWuACYKdz7jagC1A1aFVJhRBfsypv3N6LUQNb8Mb8Tdzw0jwy9h/xuywROYXSBv8R51w+kOudzbsLaBG8sqSiiIqM4P7L2vH3G7uzemcOP3p2Dgu+y/a7LBEpwSmD38wMWGZmdYEJBI7q+QZYGNzSpCL5Ueck3v9lf2rHRHHjywuYOGejhnoQCVGnDH4X+O/t6pzb65wbD1wEjPS6fEROOCexFu+P6c/5bevz/z7+lrsnp3HomIZ6EAk1pe3qmW9mPQGcc+nOuWVBrEkqsNox0bx4cw/uHdKGD5du5+p/fM2anTl+lyUihZQ2+M8D5pnZBjNbZmbLzUzhL0WKiDB+eV4rJt3Wi6wDR7ni+Tm8Mmcj+TrbVyQklPYErmZFzXfObSrzioqgE7gqrqwDR7nv38v4YtUu+reK4/HrupBUp5rfZYmEhbM9gWtTUbeyL1Mqm/iaVZkwIoW/XN2JbzbtZchTs/h42Xa/yxIJa6Xt6hE5Y2bG8F5N+fSuc2mRUJMxby3h15PT2H/kuN+liYQlBb+Um+bxNXh3dF/uvrA1Hy7dzqVPz2a+jvkXKXdBC34za2JmX5nZKjNbaWZ3efNjzWy6ma3z7usFqwYJPVGREdx94Tm8O7ov0ZHG8Anz+ctnqziam+d3aSJhI5hb/LnAb5xz7YA+wC/NrD1wH/Clc6418KX3WMJMt6b1+ORX53JDz6a8OPM7hv79a9Zm6LBPkfIQtOB3zu1wzn3jTecAq4BGwFXAJG+xScDQYNUgoa1G1Sj+cnUnXh6Rwq79R7j8OR32KVIeyqWP37tiVzdgAZDonNsBgZUDUL+Y54wys1QzS83MzCyPMsUnF7ZP5PO7B3Juq3j++PG3jJi4kJ37NNibSLAEPfjNrCbwb+Bu59z+0j7POfeScy7FOZeSkJAQvAIlJCTUqsrLI1P487BOLN60hyFP67BPkWAJavCbWTSB0H/TOTfVm51hZknez5MIjPQpgplxY+/AYZ/J8TUY89YS7n5niS7xKFLGgnlUjwGvAKucc08W+tGHwEhveiSB6/eKnFBw2OddF7Tm42U7uODJmfx78VaN9ilSRko1ZMMZvbDZAGA2sBwouDTT/QT6+acATYHNwHXOud0lvZaGbAhfq3fu5/6py/lm8176t4rjT0M70Ty+ht9liVQIxQ3ZELTgL0sK/vCWn+94c+FmHv1sNUfz8rnzvFbcMaglVaJ0/qFISc5qrB4RP0VEGLf0acaXvxnERe0SeWL6Wi57djaL0kv8oigixVDwS4VRv3YMf7+pOxNvTeHwsTyuGz+P301dxr5DGvNH5HQo+KXCOb9tItPvGciogS2YkrqVC56cwQdp27TzV6SUFPxSIVWvEsX9l7XjwzH9aVS3Gne9k8bIVxexOfuQ36WJhDwFv1RoHRrWYeov+jPuivYsTt/NxU/P5IUZGziel3/qJ4uEKQW/VHiREcat/ZvzxW8GMeicBP72+WqueG4O32ze43dpIiFJwS+VRlKdarx4Swov3dKDfYePc80LX/PAe8t15q/ISRT8Uulc3KEB0+8ZxK39knl74WYGPfYVL8/+jmO56v4RAQW/VFI1q0bx0BUd+PzugXRtWo8/fbKKIU/PYtrKnTr6R8Kegl8qtXMSa/H6T3rx6m09iYwwRr2xmBsnLGDl9n1+lybiGwW/hIXz2tTn87vO5Y9XdWD1zv1c/twc/u/dpezar3H/Jfwo+CVsREVGcEvfZGbcex4/HdCc95ZsY/DjM3juy3UcOa5r/kr4UPBL2KlTLZoHftSe6b8exMDWCTwxfS3nPz6D95ds02UfJSwo+CVsJcfXYPwtPXhnVB9ia1bh7slpDHvhaxZv0uBvUrkp+CXs9WkRx4e/HMDj13Vh577DXPPCPMa89Q1bdmv4B6mcFPwiBIZ+vrZHY74aO5hfXdCaL1ZlcMGTM/nrZ6s1+qdUOroQi0gRduw7zGOfr2Hqkm3UionipwNa8JMBydSKifa7NJFS0xW4RM7Aqh37eWr6WqZ9m0Hd6tGMGtiCkX2TqVE1yu/SRE5JwS9yFpZv3ceT09fw1ZpM4mpU4eeDW3Jzn2bEREf6XZpIsRT8ImVg8aY9PDV9LXPWZ1G/VlV+eV4rbujVhKpRWgFI6FHwi5ShBd9l88T0tSzcuJuGdWIYc35rrktpTHSkjpeQ0KHgFyljzjnmrs/mielrWLJ5L01iq/Gr81szrFsjorQCkBBQXPDrr1PkDJkZA1rHM/Xn/Xj11p7UqRbNve8u4+KnZvFB2jbydBawhCgFv8hZMjPOa1ufj8YM4MVbelAlKoK73knj0mdm8enyHRoGQkKOunpEylh+vuPTFTt4avpaNmQepEVCDUYPbMlV3RpqJ7CUK/Xxi5SzvHzHp8t3MH7mBlZu309i7arcPqA5w3s11YlgUi4U/CI+cc4xe10W42du4OsN2dSKiWJE32bc2q85CbWq+l2eVGIKfpEQsHTLXl6ctYHPVuwkOjKC63o0ZtTAFjSLq+F3aVIJKfhFQsh3mQeYMPs7/r14G7n5+VzWKYnRg1rSsVEdv0uTSkTBLxKCdu0/witzN/LW/M3kHM3l3NbxjB7Ukn4t4zAzv8uTCk7BLxLC9h85zpvzN/PKnI1kHThK58Z1GD2oJUM6NCAyQisAOTMKfpEK4MjxPKZ+s42XZm0gPfsQyXHVGdkvmWt7NNaRQHLaFPwiFUhevuPzFTuZMPs70rbspUaVSK7p0ZgRfZNpVb+m3+VJBaHgF6mglm7Zy6Sv0/l42Q6O5eVzbut4bu2XzOA29dUNJCVS8ItUcFkHjvL2gs38c8EmMvYfpWlsdUb0bcZ1KU2oU03dQPJDCn6RSuJ4Xj7/WbmTSV+nsyh9D9WiIxnWvRG39kvmnMRafpcnIUTBL1IJrdi2j9fnpfNB2naO5ubTt0UcI/slc1H7RHUDiYJfpDLbc/AY7yzawj/nb2Lb3sM0qluNm/s044aeTahXo4rf5YlPyj34zWwicDmwyznX0Zs3DvgZkOktdr9z7tNTvZaCX6R0cvPy+WLVLiZ9nc6877KpGhXBZZ2SuL5nE3o3j9VJYWHGj+AfCBwAXj8p+A845x4/nddS8IucvjU7c/jn/E28n7aNnCO5NI+vwY9TmnBNj0bUrxXjd3lSDnzp6jGzZOBjBb+Ifw4fy+OzFTt4Z9EWFm7cTWSEcUHb+tzQqwkDWyfoMpGVWHHBH+VDLWPMbASQCvzGObenqIXMbBQwCqBp06blWJ5I5VKtSiRXd2/M1d0bsyHzAFNSt/DvxVuZ9m0GDWrHcF1KY36c0oQmsdX9LlXKSXlv8ScCWYAD/ggkOed+cqrX0Ra/SNk6npfPl6t28c6izcxcm4lzMKBVPNf3bMLFHRJ1pbBKIiS2+J1zGYUKmgB8XJ7vLyIB0ZERXNKxAZd0bMD2vYf5V+pWpqRu4c63l1CvejRXd2/M9T2b6LyASqpcg9/MkpxzO7yHw4AV5fn+IvJDDetW464LWzPm/FbMXZ/F5EVbeH1eOq/M2Ui3pnW5untjLu+UpMNCK5FgHtXzNjAYiAcygIe8x10JdPWkA3cUWhEUS109IuUr+8BR3luyjSmpW1ibcYDoSGNwm/oM69aI89vWJyZaXUEVgU7gEpHT5pzj2x37eX/JNj5I286unKPUioniso5JDO3WiN7NY4nQGcIhS8EvImclL98xb0M2U5ds5T8rdnLwWB4N68RwVbdGDOvWSPsDQpCCX0TKzKFjuUz/NoP3l2xj1ros8vId7ZNqM6xbI67s2pDE2jpBLBQo+EUkKLIOHOXjpdt5b8k2lm7dR4RB/1bxDO3aiCEdG1Czqh+nCwko+EWkHGzIPMAHS7bxXto2tuw+TEx0BOe1qc9lnZI4v219amglUK4U/CJSbpxzfLN5D+8v2c5nK3aSdeCoVgI+UPCLiC/y8h2L0nfz6fIdfLZiJ5k5gZXA4HPqc1nnJC7QSiBoFPwi4ru8fEdq+m4+KbQSqBrlfRPQSqDMKfhFJKQUrAQKvgns8lYCg9skcFmnJC5ol6gdw2dJwS8iISsv37F40x4+Wbb9eyuBQeckcHGHBlzQtr6GjDgDCn4RqRDy8x2pm/Z43wR2kLH/KBEGPZNjuah9Ihe3b0DTOA0hXRoKfhGpcPLzHcu37WP6txlM/zaDNRk5ALRJrMVF7RO5qH0inRrV0bARxVDwi0iFtzn7ENO+3cn0bzNYlL6bfAeJtatyYbtELmyfSL+WcbqWQCEKfhGpVPYcPMZXa3Yx/dsMZq7N5NCxPGpUiWRQmwQuap/I+W0SqVM92u8yfaXgF5FK68jxPOZtyGbatxl8sSqDzJyjREYYvZJjOb9tfQa3SaBV/ZqYhVeXkIJfRMJCfr5j6da9TPdWAmszDgDQqG41BrdJ4Lw29enXKo7qVSr/oaIKfhEJS9v2Hmbmmky+WrOLueuzOHQsjyqREfRqHsvgNgkMblOflgk1KuW3AQW/iIS9o7l5pKbvYcaaXcxYk8m6XYFvA01iqzH4nECXUN+WlefbgIJfROQkW/ccYsaaTGas2cXc9dkcPp5HlagIejePZXCbwIqgRXzF/Tag4BcRKcHR3DwWbdzDV2t2MWPNLjZkHgQC+wYGtIqnf+t4+reMI65mVZ8rLT0Fv4jIadiy+xAz1mYyd10WX2/IYv+RXADaJ9Xm3Nbx9G8VT8/kWKpVCd3zBhT8IiJnKM87g3jOukzmrM9i8aY9HM9zVImKIKVZPfq3iufc1vF0aFiHyBA6i1jBLyJSRg4dy2Xhxt3MXZ/F7HVZrN4ZGEqibvVo+rWMo3+reAa0iqdZXA1f6ywu+CvHrmsRkXJUvUqUt/O3PgCZOUf5ekMWc9ZlMWd9Fp8u3wkEjhbq2yKOPt6tYd1qfpZ9grb4RUTKkHOO77IOMnd9YEWwYONu9h0+DkDT2Or0aRFbbisCdfWIiPggP9+xemcO87/LZv532cWuCHq3iKNRGa8IFPwiIiEgP9+xJuP7K4K9h4KzIlDwi4iEoJJWBE1iq/G3azrTr2X8Gb22du6KiISgiAijXVJt2iXV5rb+zX+wImhQO6bM31PBLyISQk5eEQTlPYLyqiIiErIU/CIiYUbBLyISZhT8IiJhRsEvIhJmFPwiImFGwS8iEmYU/CIiYaZCDNlgZpnAJr/rKEY8kOV3ESVQfWdH9Z0d1Xf2zqbGZs65hJNnVojgD2VmllrUWBihQvWdHdV3dlTf2QtGjerqEREJMwp+EZEwo+A/ey/5XcApqL6zo/rOjuo7e2Veo/r4RUTCjLb4RUTCjIJfRCTMKPhPg5k1MbOvzGyVma00s7u8+ePMbJuZpXm3y3ysMd3Mlnt1pHrzYs1supmt8+7r+VRbm0JtlGZm+83sbj/bz8wmmtkuM1tRaF6x7WVmvzOz9Wa2xsyG+FTfY2a22syWmdl7ZlbXm59sZocLteN4n+or9vMMkfabXKi2dDNL8+b70X7FZUpw/wadc7qV8gYkAd296VrAWqA9MA4Y63d9Xl3pQPxJ8x4F7vOm7wP+FgJ1RgI7gWZ+th8wEOgOrDhVe3mf9VKgKtAc2ABE+lDfxUCUN/23QvUlF17Ox/Yr8vMMlfY76edPAA/62H7FZUpQ/wa1xX8anHM7nHPfeNM5wCqgkb9VlcpVwCRvehIw1L9STrgA2OCc8/WMbOfcLGD3SbOLa6+rgHecc0edcxuB9UCv8q7POTfNOZfrPZwPNA5mDSUppv2KExLtV8DMDPgx8HYwayhJCZkS1L9BBf8ZMrNkoBuwwJs1xvvqPdGvrhSPA6aZ2WIzG+XNS3TO7YDAHxpQ37fq/ucGvv8PFyrtB8W3VyNgS6HltuL/iv8nwGeFHjc3syVmNtPMzvWrKIr+PEOt/c4FMpxz6wrN8639TsqUoP4NKvjPgJnVBP4N3O2c2w+8ALQEugI7CHx99Et/51x34FLgl2Y20MdaimRmVYArgX95s0Kp/UpiRczz7XhoM3sAyAXe9GbtAJo657oB9wBvmVltH0or7vMMqfYDhvP9jQ/f2q+ITCl20SLmnXYbKvhPk5lFE/iA3nTOTQVwzmU45/Kcc/nABIL89bUkzrnt3v0u4D2vlgwzSwLw7nf5VZ/nUuAb51wGhFb7eYprr61Ak0LLNQa2l3NtAJjZSOBy4Cbndf56X/+zvenFBPp/zynv2kr4PEOp/aKAq4HJBfP8ar+iMoUg/w0q+E+D1yf4CrDKOfdkoflJhRYbBqw4+bnlwcxqmFmtgmkCOwFXAB8CI73FRgIf+FFfId/b0gqV9iukuPb6ELjBzKqaWXOgNbCwvIszs0uA3wJXOucOFZqfYGaR3nQLr77vfKivuM8zJNrPcyGw2jm3tWCGH+1XXKYQ7L/B8tyDXdFvwAACX6uWAWne7TLgDWC5N/9DIMmn+loQ2OO/FFgJPODNjwO+BNZ597E+tmF1IBuoU2ieb+1HYAW0AzhOYGvq9pLaC3iAwJbgGuBSn+pbT6Cft+BvcLy37DXe574U+Aa4wqf6iv08Q6H9vPmvAaNPWtaP9isuU4L6N6ghG0REwoy6ekREwoyCX0QkzCj4RUTCjIJfRCTMKPhFRMKMgl/KlDfCYZkch29mg82sXymXTTez+FMsc6uZNSyj2hLMbI6ZrTCzoYXmf1Dce5jZaDMbURbvX97Ksu3Efwp+CWWDgVIFfyndCpRVeA0nMHhWX+BeADO7gsAZyUWeSemcG++ce/1s37jgJKNyditl13biMwW/BEOkmU3wxhefZmbVAMyspZl97g0gN9vM2nrzrzCzBd7gWF+YWaI3YNVo4Nfe2OjfGzDLzOK8115iZi/ijWFy8jcOMxtrgfHhrwVSgDe91/uRmb1XaLmLzGwqpXccqEZgeNx8bwiAu4HHinuCV8dYb3qGmf3NzBaa2dqC38/MIs3scQtcU2GZmd3pzU83swfNbA5wnZldbGbzzOwbM/uXN9ZLwXJ/9n6Wambdzew/ZrbBzEYXquVeM1vkvcfDhdpu1cmfXRFtV+002klCUbDPTNMtvG4ExjTPBbp6j6cAN3vTXwKtvenewH+96Xr87/rPPwWe8KbHUcw4/cCz/G8c9R8ROPsxnpPGVAfGAuO86RlAijdtwGogwXv8FqdxpiZQB/gESCUwxPSvgJGneM6J38erpeD3vAz4wpv+OYFxWwrG24/17tOB//Om44FZQA3v8W8LtUU68HNv+ikCZ4TWAhKAXd78iwlcwNsIbPx9TGDc+pI+uxNtp1vFv0UVsS4QOVsbnXNp3vRiINnbIu0H/CswPAkQ2FqGwEBTk70xXqoAG0vxHgMJDLKFc+4TM9tzOgU655yZvQHcbGavEuiyKXX/u3NuH4EVDhYYdvi3wNVmNoHAiuwJ59y8U7xMwTeMxQRCFwJjyIx33nj7zrnCY8kXDCjWh8AFOeZ6bVkFKPxeH3r3y4GaLjDOe46ZHbHA1bou9m5LvOVqEhjzZTNFfHan+B2kAlLwSzAcLTSdR6BLJALY65zrWsTyzwFPOuc+NLPBBLaMS6Oo8UZy+X4XZkwJz38V+Ag4AvzL/e/iJgCYWW/gRe/hg865Dynag8AjBPr9FxP49vABcN4p6i9opzz+979oFD/M7sFCy0x3zg0/xevm8/3PIt97HwP+4px7sfCTvO61oj47qWTUxy/lwgXGGN9oZtdBYFRCM+vi/bgOsM2bHlnoaTkEuimKMgu4yXutSwlsZQNkAPW9fQBVCQxdXOTrucBO2O3A7wkM2nVyzQucc129W5Ghb2atgYbOuZkEBqDLJxDcJa1wSjINGO3tM8DMYotYZj7Q38xaectUN7PTGT74P8BPCu0XaGRmp7o4T0mfhVQwCn4pTzcBt5tZweihV3nzxxHoApoNZBVa/iNgWFE7d4GHgYFm9g2BbovNAM6548D/I3AVo48J9OMXeA0Yf9IOyjeBLc65b8/wd3qEwIoDAiNB3kogmB8/w9d7mcDvssxrpxtPXsA5l+m9z9tmtsx7v7alfQPn3DQC30rmmdly4F1OHeqv8cO2kwpKo3NKWDOz54ElzrlX/K5FpLwo+CVsmdliAv3mFznnjp5qeZHKQsEvIhJm1McvIhJmFPwiImFGwS8iEmYU/CIiYUbBLyISZv4/VmrU8yxF1SoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAArRklEQVR4nO3dd3yV5f3/8dcnA8KGDEKYYcneYSPgRK0DHFUcoLVF2mK1Fr+12ir+WjvcqxVFUbQOqMU9ClqZsoKEJVvCJiRhhU2S6/fHuUMjJiFATu6TnPfz8TiPc5879znnk+sk7/s+133f123OOUREJHxE+F2AiIiULwW/iEiYUfCLiIQZBb+ISJhR8IuIhJkovwsojfj4eJecnOx3GSIiFcrixYuznHMJJ8+vEMGfnJxMamqq32WIiFQoZrapqPnq6hERCTMKfhGRMKPgFxEJMxWij19ETs/x48fZunUrR44c8bsUKQcxMTE0btyY6OjoUi2v4BephLZu3UqtWrVITk7GzPwuR4LIOUd2djZbt26lefPmpXqOunpEKqEjR44QFxen0A8DZkZcXNxpfbtT8ItUUgr98HG6n3WlDv5F6bt5YcYGv8sQEQkplTr4P1+xk0f/s5pvNu/xuxQROQ3jx4/n9ddfL5PXSk5OJisrq8Rl/vznP3/vcb9+/crkvUtrxowZfP311ycel+XvX5RKHfy/vugcGtSO4YH3VpCbl+93OSJhyTlHfv7p/f+NHj2aESNG/GB+bm5uWZX1PScHf+EQLisl1X5y8Bf3+5eVSh38NatG8dAVHVi1Yz+vzk33uxyRsJGenk67du34xS9+Qffu3dmyZQuPPfYYPXv2pHPnzjz00EMnln399dfp3LkzXbp04ZZbbgFg3LhxPP744wAMHjyY+++/n0GDBvHMM8+waNEi+vXrR5cuXejVqxc5OTm89tprjBkz5sRrXn755cyYMeMHdQ0dOpQePXrQoUMHXnrpJQDuu+8+Dh8+TNeuXbnpppsAqFmzJhBYad1777107NiRTp06MXnyZCAQ1IMHD+baa6+lbdu23HTTTRR1NcOTa//oo4/o3bs33bp148ILLyQjI4P09HTGjx/PU089RdeuXZk9e/b3fv+0tDT69OlD586dGTZsGHv2nH0PRqU/nHNIh0QubFefJ6ev5bLOSTSqW83vkkTK1cMfreTb7fvL9DXbN6zNQ1d0KHGZNWvW8Oqrr/KPf/yDadOmsW7dOhYuXIhzjiuvvJJZs2YRFxfHI488wty5c4mPj2f37t1FvtbevXuZOXMmx44do23btkyePJmePXuyf/9+qlUr/f/0xIkTiY2N5fDhw/Ts2ZNrrrmGv/71rzz//POkpaX9YPmpU6eSlpbG0qVLycrKomfPngwcOBCAJUuWsHLlSho2bEj//v2ZO3cuAwYMKLZ2gD179jB//nzMjJdffplHH32UJ554gtGjR1OzZk3Gjh0LwJdffnni+SNGjOC5555j0KBBPPjggzz88MM8/fTTpf6di1Kpt/ghsLd73JWBP9BxH670uRqR8NGsWTP69OkDwLRp05g2bRrdunWje/furF69mnXr1vHf//6Xa6+9lvj4eABiY2OLfK3rr78eCKxMkpKS6NmzJwC1a9cmKqr026/PPvssXbp0oU+fPmzZsoV169aVuPycOXMYPnw4kZGRJCYmMmjQIBYtWgRAr169aNy4MREREXTt2pX09PQSa4fA+RVDhgyhU6dOPPbYY6xcWXIm7du3j7179zJo0CAARo4cyaxZs0r9+xan0m/xAzSuV527L2zNXz5bzbSVO7m4QwO/SxIpN6faMg+WGjVqnJh2zvG73/2OO+6443vLPPvss6U6FLHgtZxzRS4fFRX1vf0IRR3TPmPGDL744gvmzZtH9erVGTx48CmPfS+q+6ZA1apVT0xHRkYW24dfuB3uvPNO7rnnHq688kpmzJjBuHHjSnz/YKn0W/wFfjKgOW0b1GLchys5eDQ4O4hEpGhDhgxh4sSJHDhwAIBt27axa9cuLrjgAqZMmUJ2djZAsV09Bdq2bcv27dtPbHXn5OSQm5tLcnIyaWlp5Ofns2XLFhYuXPiD5+7bt4969epRvXp1Vq9ezfz580/8LDo6muPHj//gOQMHDmTy5Mnk5eWRmZnJrFmz6NWr1xm3w759+2jUqBEAkyZNOjG/Vq1a5OTk/GD5OnXqUK9ePWbPng3AG2+8cWLr/2yETfBHR0bwyLCObN93hKe/WOt3OSJh5eKLL+bGG2+kb9++dOrUiWuvvZacnBw6dOjAAw88wKBBg+jSpQv33HNPia9TpUoVJk+ezJ133kmXLl246KKLOHLkCP3796d58+Z06tSJsWPH0r179x8895JLLiE3N5fOnTvzhz/84UQ3FMCoUaPo3LnziZ27BYYNG3Zix/P555/Po48+SoMGZ95jMG7cOK677jrOPffcE91bAFdccQXvvffeiZ27hU2aNIl7772Xzp07k5aWxoMPPnjG71/ASvoqEypSUlJcWV2I5XdTlzMldQsfjRlA+4a1y+Q1RULNqlWraNeund9lSDkq6jM3s8XOuZSTlw2bLf4C913SlrrVorn/veXk5Yf+Sk9EpKyFXfDXqR7N7y9vR9qWvby9cLPf5YiIlLuwC36AoV0b0b9VHH/7fDW7cjReuVROFaEbV8rG6X7WYRn8ZsYfr+rI0eP5/OnjVX6XI1LmYmJiyM7OVviHgYLx+GNiYkr9nLA4jr8oLRJq8ovzWvL0F+u4LqUx57ZO8LskkTLTuHFjtm7dSmZmpt+lSDkouAJXaYXdUT2FHTmex6XPzMY5x+d3DyQmOrLM30NExC86qqcIMdGRPDK0I+nZh/jHV+v9LkdEpFyEdfAD9GsVz7BujXhh5gbW7zrgdzkiIkEX9sEPcP9l7agWHcnv31+unWEiUukp+IGEWlW579J2zP9uN1O/2eZ3OSIiQaXg99zQswndm9blkU9XsefgMb/LEREJmqAFv5nFmNlCM1tqZivN7GFvfqyZTTezdd59vWDVcDoiIoxHhnVi3+Hj/O3z1X6XIyISNMHc4j8KnO+c6wJ0BS4xsz7AfcCXzrnWwJfe45DQLqk2Px3QnHcWbWFResnDw4qIVFRBC34XUHCYTLR3c8BVQMFA1JOAocGq4UzcdWFrGtWtxgPvLedYri7QLiKVT1D7+M0s0szSgF3AdOfcAiDRObcDwLuvX8xzR5lZqpmllufZh9WrRPHwlR1Ym3GAV+ZsLLf3FREpL0ENfudcnnOuK9AY6GVmHU/juS8551KccykJCeU7nMKF7RMZ0iGRZ75cy5bdh8r1vUVEgq1cjupxzu0FZgCXABlmlgTg3e8qjxpO17grOxBpxh8+WKFj+0WkUgnmUT0JZlbXm64GXAisBj4ERnqLjQQ+CFYNZyOpTjXuHdKGGWsyeWP+Jr/LEREpM8EcnTMJmGRmkQRWMFOccx+b2TxgipndDmwGrgtiDWdlZL9kZq3L4k+frCKlWawu1SgilUJYj85ZGtkHjnLpM7OpGRPFx3cOoHqVsB3JWkQqGI3OeYbialbl6Ru6sjHrIA99sNLvckREzpqCvxT6tYxnzHmt+NfirXyQprF8RKRiU/CX0l0XtCalWT0eeG8Fm7IP+l2OiMgZU/CXUlRkBE/f0JUIgzvfXqKzekWkwlLwn4bG9arz6LWdWbZ1H49PW+N3OSIiZ0TBf5ou6ZjEzX2a8tKs75ixJiTPPRMRKZGC/wz8/kftadugFr+ZspRd+4/4XY6IyGlR8J+BmOhInhvejYPHcvn1lDTy80P/XAgRkQIK/jPUOrEW467owNz12bwwc4Pf5YiIlJqC/yxc37MJP+qcxJPT17J40x6/yxERKRUF/1kwM/5ydSeS6sTwq7eXsO/wcb9LEhE5JQX/WaodE81zw7uRsf8Iv5u6TEM4i0jIU/CXgW5N6zF2SBs+Xb6Ttxdu8bscEZESKfjLyKhzW3Bu63ge/mglazNy/C5HRKRYCv4yEhFhPPHjLtSKiWLMW99w+Fie3yWJiBRJwV+G6teK4ckfd2VtxgH++Mm3fpcjIlIkBX8ZG3hOAncMasFbCzbzybIdfpcjIvIDCv4gGHtxG7o0qct9U5exZfchv8sREfkeBX8QREdG8NwN3cAFhnA+mqv+fhEJHQr+IGkaFxjCOW3LXn77ro7vF5HQoeAPoks7JTH24nN4P207z3y5zu9yREQAiPK7gMrul+e1YmPWIZ7+Yh3JcTUY2q2R3yWJSJjTFn+QFYzn07t5LP/37jJS03f7XZKIhDkFfzmoEhXB+Jt70KheNUa9sVgXaxcRXyn4y0m9GlWYeGtP8p3jttcWse+QRvIUEX8o+MtR8/gavHhzD7bsPsTofy7mWG6+3yWJSBhS8Jez3i3i+OvVnZn3XTa/f3+5DvMUkXKno3p8cE2PxmzKPsiz/11P8/ia/HxwS79LEpEwouD3ya8vOoeN2Yf42+eraRZXncs6JfldkoiECXX1+MTMeOzaznRvWpdfT04jbctev0sSkTCh4PdRTHQkE0akUL92VX46KZWtezSgm4gEn4LfZ3E1qzJxZE+O5uZx+2up5BzRYZ4iElwK/hDQOrEWL9zUgw2ZBxjz1hJy83SYp4gEj4I/RAxoHc8fh3Zk5tpMHv7oWx3mKSJBo6N6QsjwXk1JzzrIi7O+o3l8DX4yoLnfJYlIJaTgDzG/vaQt6dkH+eMn39I0tjoXtk/0uyQRqWTU1RNiIiKMp6/vRqdGdfjVO0tYsW2f3yWJSCWj4A9B1apE8vKIFOpUi+b2SYs0mqeIlCkFf4iqXzuG127rxbHcfIa/NF8XbReRMhO04DezJmb2lZmtMrOVZnaXN3+cmW0zszTvdlmwaqjo2jSoxT9/2puDx/K44aX5OsFLRMpEMLf4c4HfOOfaAX2AX5pZe+9nTznnunq3T4NYQ4XXoWEd3vxpb3KOHGf4hPls33vY75JEpIILWvA753Y4577xpnOAVYAuOHsGOjaqwxu392bvwePcOGE+O/cd8bskEanAyqWP38ySgW7AAm/WGDNbZmYTzaxeMc8ZZWapZpaamZlZHmWGtC5N6jLp9l5kHTjGjRPms2u/wl9EzkzQg9/MagL/Bu52zu0HXgBaAl2BHcATRT3POfeScy7FOZeSkJAQ7DIrhO5N6/HabT3Zuf8IwyfMJzPnqN8liUgFFNTgN7NoAqH/pnNuKoBzLsM5l+ecywcmAL2CWUNlk5Icy6u39mT73iPc9PJ8sg8o/EXk9ATzqB4DXgFWOeeeLDS/8BVHhgErglVDZdW7RRyv3JrC5t2HuOnlBew+eMzvkkSkAgnmFn9/4Bbg/JMO3XzUzJab2TLgPODXQayh0urXMp6XR/RkY9ZBbn55AXsPKfxFpHSsIowCmZKS4lJTU/0uIyTNXJvJzyalnjjmv061aL9LEpEQYWaLnXMpJ8/XmbsV3KBzEnjxlh6s3rmfERMXsl8XchGRU1DwVwLnta3PP27qwcpt+xg5caGu4iUiJVLwVxIXtU/k+Ru7s2zrPm57dREHj+b6XZKIhCgFfyVySccGPHtDN5Zs2cttry3i0DGFv4j8kIK/kvlR5ySeur4rqem7uf21VA4fy/O7JBEJMQr+SujKLg154sddmL8xm5+9nqpuHxH5HgV/JTWsW2Mev7YLX2/IYviE+WTpDF8R8Sj4K7FrejRmwogU1mbkcM0LX5OepSt5iYiCv9K7oF0ib/+sDzlHcrn6ha9J27LX75JExGcK/jDQrWk93h3dlxpVIxn+0nz+uzrD75JExEcK/jDRIqEmU3/en1b1a/Kz1xfzzsLNfpckIj5R8IeRhFpVeWdUH/q3iue+qct55ot1VISxmkSkbCn4w0yNqlG8MjKFa7o35qkv1nL/e8vJzcv3uywRKUdRpV3QzLoA53oPZzvnlganJAm26MgIHr+uM0l1Ynj+q/Xs2n+U527sRvUqpf5zEJEKrFRb/GZ2F/AmUN+7/dPM7gxmYRJcZsbYIW3449COfLVmFzdOWKCreYmEidJ29dwO9HbOPeicexDoA/wseGVJebmlTzNeuLkHq3bs59rx89icfcjvkkQkyEob/AYUHvQlz5snlcCQDg1462e92XPoGFe/MJflW/f5XZKIBFFpg/9VYIGZjTOzccB8AtfTlUqiR7NY3h3dj6pRkVz/0jxmrNnld0kiEiSlCn7vYum3AbuBPcBtzrmng1iX+KBV/ZpM/UU/msXV4KeTUnl38Va/SxKRICgx+M2stncfC6QD/wTeADZ586SSSawdw5Q7+tC7RSxj/7WU5/+rY/1FKptTbfG/5d0vBlIL3QoeSyVUKyaaV2/txdCuDXl82lrGvLWEAxraWaTSKPHAbefc5d598/IpR0JFlagInrq+K22TavPo56tZm5HD+Ft60DKhpt+lichZKu1x/F+WZp5ULmbG6EEteeP23mQfPMZVz8/lPyt3+l2WiJylU/Xxx3h9+fFmVs/MYr1bMtCwXCoU3/VvFc9Hdw6gRUIN7nhjMY//Zw15+er3F6moTrXFfweB/vy23n3B7QPg78EtTUJJo7rVmHJHX65PacLzX63nttcWsefgMb/LEpEzYKU5YsPM7nTOPVcO9RQpJSXFpaZqX3KoeHvhZh76YCX1a1dl/M096Niojt8liUgRzGyxcy7l5PmlPY7/OTPraGY/NrMRBbeyL1MqguG9mjJldF/y8h3XvPC1jvcXqWBKu3P3IeA573Ye8ChwZRDrkhDXtUldPrpzAN2b1mPsv5byh/dXcCxXwzuLVASlHbLhWuACYKdz7jagC1A1aFVJhRBfsypv3N6LUQNb8Mb8Tdzw0jwy9h/xuywROYXSBv8R51w+kOudzbsLaBG8sqSiiIqM4P7L2vH3G7uzemcOP3p2Dgu+y/a7LBEpwSmD38wMWGZmdYEJBI7q+QZYGNzSpCL5Ueck3v9lf2rHRHHjywuYOGejhnoQCVGnDH4X+O/t6pzb65wbD1wEjPS6fEROOCexFu+P6c/5bevz/z7+lrsnp3HomIZ6EAk1pe3qmW9mPQGcc+nOuWVBrEkqsNox0bx4cw/uHdKGD5du5+p/fM2anTl+lyUihZQ2+M8D5pnZBjNbZmbLzUzhL0WKiDB+eV4rJt3Wi6wDR7ni+Tm8Mmcj+TrbVyQklPYErmZFzXfObSrzioqgE7gqrqwDR7nv38v4YtUu+reK4/HrupBUp5rfZYmEhbM9gWtTUbeyL1Mqm/iaVZkwIoW/XN2JbzbtZchTs/h42Xa/yxIJa6Xt6hE5Y2bG8F5N+fSuc2mRUJMxby3h15PT2H/kuN+liYQlBb+Um+bxNXh3dF/uvrA1Hy7dzqVPz2a+jvkXKXdBC34za2JmX5nZKjNbaWZ3efNjzWy6ma3z7usFqwYJPVGREdx94Tm8O7ov0ZHG8Anz+ctnqziam+d3aSJhI5hb/LnAb5xz7YA+wC/NrD1wH/Clc6418KX3WMJMt6b1+ORX53JDz6a8OPM7hv79a9Zm6LBPkfIQtOB3zu1wzn3jTecAq4BGwFXAJG+xScDQYNUgoa1G1Sj+cnUnXh6Rwq79R7j8OR32KVIeyqWP37tiVzdgAZDonNsBgZUDUL+Y54wys1QzS83MzCyPMsUnF7ZP5PO7B3Juq3j++PG3jJi4kJ37NNibSLAEPfjNrCbwb+Bu59z+0j7POfeScy7FOZeSkJAQvAIlJCTUqsrLI1P487BOLN60hyFP67BPkWAJavCbWTSB0H/TOTfVm51hZknez5MIjPQpgplxY+/AYZ/J8TUY89YS7n5niS7xKFLGgnlUjwGvAKucc08W+tGHwEhveiSB6/eKnFBw2OddF7Tm42U7uODJmfx78VaN9ilSRko1ZMMZvbDZAGA2sBwouDTT/QT6+acATYHNwHXOud0lvZaGbAhfq3fu5/6py/lm8176t4rjT0M70Ty+ht9liVQIxQ3ZELTgL0sK/vCWn+94c+FmHv1sNUfz8rnzvFbcMaglVaJ0/qFISc5qrB4RP0VEGLf0acaXvxnERe0SeWL6Wi57djaL0kv8oigixVDwS4VRv3YMf7+pOxNvTeHwsTyuGz+P301dxr5DGvNH5HQo+KXCOb9tItPvGciogS2YkrqVC56cwQdp27TzV6SUFPxSIVWvEsX9l7XjwzH9aVS3Gne9k8bIVxexOfuQ36WJhDwFv1RoHRrWYeov+jPuivYsTt/NxU/P5IUZGziel3/qJ4uEKQW/VHiREcat/ZvzxW8GMeicBP72+WqueG4O32ze43dpIiFJwS+VRlKdarx4Swov3dKDfYePc80LX/PAe8t15q/ISRT8Uulc3KEB0+8ZxK39knl74WYGPfYVL8/+jmO56v4RAQW/VFI1q0bx0BUd+PzugXRtWo8/fbKKIU/PYtrKnTr6R8Kegl8qtXMSa/H6T3rx6m09iYwwRr2xmBsnLGDl9n1+lybiGwW/hIXz2tTn87vO5Y9XdWD1zv1c/twc/u/dpezar3H/Jfwo+CVsREVGcEvfZGbcex4/HdCc95ZsY/DjM3juy3UcOa5r/kr4UPBL2KlTLZoHftSe6b8exMDWCTwxfS3nPz6D95ds02UfJSwo+CVsJcfXYPwtPXhnVB9ia1bh7slpDHvhaxZv0uBvUrkp+CXs9WkRx4e/HMDj13Vh577DXPPCPMa89Q1bdmv4B6mcFPwiBIZ+vrZHY74aO5hfXdCaL1ZlcMGTM/nrZ6s1+qdUOroQi0gRduw7zGOfr2Hqkm3UionipwNa8JMBydSKifa7NJFS0xW4RM7Aqh37eWr6WqZ9m0Hd6tGMGtiCkX2TqVE1yu/SRE5JwS9yFpZv3ceT09fw1ZpM4mpU4eeDW3Jzn2bEREf6XZpIsRT8ImVg8aY9PDV9LXPWZ1G/VlV+eV4rbujVhKpRWgFI6FHwi5ShBd9l88T0tSzcuJuGdWIYc35rrktpTHSkjpeQ0KHgFyljzjnmrs/mielrWLJ5L01iq/Gr81szrFsjorQCkBBQXPDrr1PkDJkZA1rHM/Xn/Xj11p7UqRbNve8u4+KnZvFB2jbydBawhCgFv8hZMjPOa1ufj8YM4MVbelAlKoK73knj0mdm8enyHRoGQkKOunpEylh+vuPTFTt4avpaNmQepEVCDUYPbMlV3RpqJ7CUK/Xxi5SzvHzHp8t3MH7mBlZu309i7arcPqA5w3s11YlgUi4U/CI+cc4xe10W42du4OsN2dSKiWJE32bc2q85CbWq+l2eVGIKfpEQsHTLXl6ctYHPVuwkOjKC63o0ZtTAFjSLq+F3aVIJKfhFQsh3mQeYMPs7/r14G7n5+VzWKYnRg1rSsVEdv0uTSkTBLxKCdu0/witzN/LW/M3kHM3l3NbxjB7Ukn4t4zAzv8uTCk7BLxLC9h85zpvzN/PKnI1kHThK58Z1GD2oJUM6NCAyQisAOTMKfpEK4MjxPKZ+s42XZm0gPfsQyXHVGdkvmWt7NNaRQHLaFPwiFUhevuPzFTuZMPs70rbspUaVSK7p0ZgRfZNpVb+m3+VJBaHgF6mglm7Zy6Sv0/l42Q6O5eVzbut4bu2XzOA29dUNJCVS8ItUcFkHjvL2gs38c8EmMvYfpWlsdUb0bcZ1KU2oU03dQPJDCn6RSuJ4Xj7/WbmTSV+nsyh9D9WiIxnWvRG39kvmnMRafpcnIUTBL1IJrdi2j9fnpfNB2naO5ubTt0UcI/slc1H7RHUDiYJfpDLbc/AY7yzawj/nb2Lb3sM0qluNm/s044aeTahXo4rf5YlPyj34zWwicDmwyznX0Zs3DvgZkOktdr9z7tNTvZaCX6R0cvPy+WLVLiZ9nc6877KpGhXBZZ2SuL5nE3o3j9VJYWHGj+AfCBwAXj8p+A845x4/nddS8IucvjU7c/jn/E28n7aNnCO5NI+vwY9TmnBNj0bUrxXjd3lSDnzp6jGzZOBjBb+Ifw4fy+OzFTt4Z9EWFm7cTWSEcUHb+tzQqwkDWyfoMpGVWHHBH+VDLWPMbASQCvzGObenqIXMbBQwCqBp06blWJ5I5VKtSiRXd2/M1d0bsyHzAFNSt/DvxVuZ9m0GDWrHcF1KY36c0oQmsdX9LlXKSXlv8ScCWYAD/ggkOed+cqrX0Ra/SNk6npfPl6t28c6izcxcm4lzMKBVPNf3bMLFHRJ1pbBKIiS2+J1zGYUKmgB8XJ7vLyIB0ZERXNKxAZd0bMD2vYf5V+pWpqRu4c63l1CvejRXd2/M9T2b6LyASqpcg9/MkpxzO7yHw4AV5fn+IvJDDetW464LWzPm/FbMXZ/F5EVbeH1eOq/M2Ui3pnW5untjLu+UpMNCK5FgHtXzNjAYiAcygIe8x10JdPWkA3cUWhEUS109IuUr+8BR3luyjSmpW1ibcYDoSGNwm/oM69aI89vWJyZaXUEVgU7gEpHT5pzj2x37eX/JNj5I286unKPUioniso5JDO3WiN7NY4nQGcIhS8EvImclL98xb0M2U5ds5T8rdnLwWB4N68RwVbdGDOvWSPsDQpCCX0TKzKFjuUz/NoP3l2xj1ros8vId7ZNqM6xbI67s2pDE2jpBLBQo+EUkKLIOHOXjpdt5b8k2lm7dR4RB/1bxDO3aiCEdG1Czqh+nCwko+EWkHGzIPMAHS7bxXto2tuw+TEx0BOe1qc9lnZI4v219amglUK4U/CJSbpxzfLN5D+8v2c5nK3aSdeCoVgI+UPCLiC/y8h2L0nfz6fIdfLZiJ5k5gZXA4HPqc1nnJC7QSiBoFPwi4ru8fEdq+m4+KbQSqBrlfRPQSqDMKfhFJKQUrAQKvgns8lYCg9skcFmnJC5ol6gdw2dJwS8iISsv37F40x4+Wbb9eyuBQeckcHGHBlzQtr6GjDgDCn4RqRDy8x2pm/Z43wR2kLH/KBEGPZNjuah9Ihe3b0DTOA0hXRoKfhGpcPLzHcu37WP6txlM/zaDNRk5ALRJrMVF7RO5qH0inRrV0bARxVDwi0iFtzn7ENO+3cn0bzNYlL6bfAeJtatyYbtELmyfSL+WcbqWQCEKfhGpVPYcPMZXa3Yx/dsMZq7N5NCxPGpUiWRQmwQuap/I+W0SqVM92u8yfaXgF5FK68jxPOZtyGbatxl8sSqDzJyjREYYvZJjOb9tfQa3SaBV/ZqYhVeXkIJfRMJCfr5j6da9TPdWAmszDgDQqG41BrdJ4Lw29enXKo7qVSr/oaIKfhEJS9v2Hmbmmky+WrOLueuzOHQsjyqREfRqHsvgNgkMblOflgk1KuW3AQW/iIS9o7l5pKbvYcaaXcxYk8m6XYFvA01iqzH4nECXUN+WlefbgIJfROQkW/ccYsaaTGas2cXc9dkcPp5HlagIejePZXCbwIqgRXzF/Tag4BcRKcHR3DwWbdzDV2t2MWPNLjZkHgQC+wYGtIqnf+t4+reMI65mVZ8rLT0Fv4jIadiy+xAz1mYyd10WX2/IYv+RXADaJ9Xm3Nbx9G8VT8/kWKpVCd3zBhT8IiJnKM87g3jOukzmrM9i8aY9HM9zVImKIKVZPfq3iufc1vF0aFiHyBA6i1jBLyJSRg4dy2Xhxt3MXZ/F7HVZrN4ZGEqibvVo+rWMo3+reAa0iqdZXA1f6ywu+CvHrmsRkXJUvUqUt/O3PgCZOUf5ekMWc9ZlMWd9Fp8u3wkEjhbq2yKOPt6tYd1qfpZ9grb4RUTKkHOO77IOMnd9YEWwYONu9h0+DkDT2Or0aRFbbisCdfWIiPggP9+xemcO87/LZv532cWuCHq3iKNRGa8IFPwiIiEgP9+xJuP7K4K9h4KzIlDwi4iEoJJWBE1iq/G3azrTr2X8Gb22du6KiISgiAijXVJt2iXV5rb+zX+wImhQO6bM31PBLyISQk5eEQTlPYLyqiIiErIU/CIiYUbBLyISZhT8IiJhRsEvIhJmFPwiImFGwS8iEmYU/CIiYaZCDNlgZpnAJr/rKEY8kOV3ESVQfWdH9Z0d1Xf2zqbGZs65hJNnVojgD2VmllrUWBihQvWdHdV3dlTf2QtGjerqEREJMwp+EZEwo+A/ey/5XcApqL6zo/rOjuo7e2Veo/r4RUTCjLb4RUTCjIJfRCTMKPhPg5k1MbOvzGyVma00s7u8+ePMbJuZpXm3y3ysMd3Mlnt1pHrzYs1supmt8+7r+VRbm0JtlGZm+83sbj/bz8wmmtkuM1tRaF6x7WVmvzOz9Wa2xsyG+FTfY2a22syWmdl7ZlbXm59sZocLteN4n+or9vMMkfabXKi2dDNL8+b70X7FZUpw/wadc7qV8gYkAd296VrAWqA9MA4Y63d9Xl3pQPxJ8x4F7vOm7wP+FgJ1RgI7gWZ+th8wEOgOrDhVe3mf9VKgKtAc2ABE+lDfxUCUN/23QvUlF17Ox/Yr8vMMlfY76edPAA/62H7FZUpQ/wa1xX8anHM7nHPfeNM5wCqgkb9VlcpVwCRvehIw1L9STrgA2OCc8/WMbOfcLGD3SbOLa6+rgHecc0edcxuB9UCv8q7POTfNOZfrPZwPNA5mDSUppv2KExLtV8DMDPgx8HYwayhJCZkS1L9BBf8ZMrNkoBuwwJs1xvvqPdGvrhSPA6aZ2WIzG+XNS3TO7YDAHxpQ37fq/ucGvv8PFyrtB8W3VyNgS6HltuL/iv8nwGeFHjc3syVmNtPMzvWrKIr+PEOt/c4FMpxz6wrN8639TsqUoP4NKvjPgJnVBP4N3O2c2w+8ALQEugI7CHx99Et/51x34FLgl2Y20MdaimRmVYArgX95s0Kp/UpiRczz7XhoM3sAyAXe9GbtAJo657oB9wBvmVltH0or7vMMqfYDhvP9jQ/f2q+ITCl20SLmnXYbKvhPk5lFE/iA3nTOTQVwzmU45/Kcc/nABIL89bUkzrnt3v0u4D2vlgwzSwLw7nf5VZ/nUuAb51wGhFb7eYprr61Ak0LLNQa2l3NtAJjZSOBy4Cbndf56X/+zvenFBPp/zynv2kr4PEOp/aKAq4HJBfP8ar+iMoUg/w0q+E+D1yf4CrDKOfdkoflJhRYbBqw4+bnlwcxqmFmtgmkCOwFXAB8CI73FRgIf+FFfId/b0gqV9iukuPb6ELjBzKqaWXOgNbCwvIszs0uA3wJXOucOFZqfYGaR3nQLr77vfKivuM8zJNrPcyGw2jm3tWCGH+1XXKYQ7L/B8tyDXdFvwAACX6uWAWne7TLgDWC5N/9DIMmn+loQ2OO/FFgJPODNjwO+BNZ597E+tmF1IBuoU2ieb+1HYAW0AzhOYGvq9pLaC3iAwJbgGuBSn+pbT6Cft+BvcLy37DXe574U+Aa4wqf6iv08Q6H9vPmvAaNPWtaP9isuU4L6N6ghG0REwoy6ekREwoyCX0QkzCj4RUTCjIJfRCTMKPhFRMKMgl/KlDfCYZkch29mg82sXymXTTez+FMsc6uZNSyj2hLMbI6ZrTCzoYXmf1Dce5jZaDMbURbvX97Ksu3Efwp+CWWDgVIFfyndCpRVeA0nMHhWX+BeADO7gsAZyUWeSemcG++ce/1s37jgJKNyditl13biMwW/BEOkmU3wxhefZmbVAMyspZl97g0gN9vM2nrzrzCzBd7gWF+YWaI3YNVo4Nfe2OjfGzDLzOK8115iZi/ijWFy8jcOMxtrgfHhrwVSgDe91/uRmb1XaLmLzGwqpXccqEZgeNx8bwiAu4HHinuCV8dYb3qGmf3NzBaa2dqC38/MIs3scQtcU2GZmd3pzU83swfNbA5wnZldbGbzzOwbM/uXN9ZLwXJ/9n6Wambdzew/ZrbBzEYXquVeM1vkvcfDhdpu1cmfXRFtV+002klCUbDPTNMtvG4ExjTPBbp6j6cAN3vTXwKtvenewH+96Xr87/rPPwWe8KbHUcw4/cCz/G8c9R8ROPsxnpPGVAfGAuO86RlAijdtwGogwXv8FqdxpiZQB/gESCUwxPSvgJGneM6J38erpeD3vAz4wpv+OYFxWwrG24/17tOB//Om44FZQA3v8W8LtUU68HNv+ikCZ4TWAhKAXd78iwlcwNsIbPx9TGDc+pI+uxNtp1vFv0UVsS4QOVsbnXNp3vRiINnbIu0H/CswPAkQ2FqGwEBTk70xXqoAG0vxHgMJDLKFc+4TM9tzOgU655yZvQHcbGavEuiyKXX/u3NuH4EVDhYYdvi3wNVmNoHAiuwJ59y8U7xMwTeMxQRCFwJjyIx33nj7zrnCY8kXDCjWh8AFOeZ6bVkFKPxeH3r3y4GaLjDOe46ZHbHA1bou9m5LvOVqEhjzZTNFfHan+B2kAlLwSzAcLTSdR6BLJALY65zrWsTyzwFPOuc+NLPBBLaMS6Oo8UZy+X4XZkwJz38V+Ag4AvzL/e/iJgCYWW/gRe/hg865Dynag8AjBPr9FxP49vABcN4p6i9opzz+979oFD/M7sFCy0x3zg0/xevm8/3PIt97HwP+4px7sfCTvO61oj47qWTUxy/lwgXGGN9oZtdBYFRCM+vi/bgOsM2bHlnoaTkEuimKMgu4yXutSwlsZQNkAPW9fQBVCQxdXOTrucBO2O3A7wkM2nVyzQucc129W5Ghb2atgYbOuZkEBqDLJxDcJa1wSjINGO3tM8DMYotYZj7Q38xaectUN7PTGT74P8BPCu0XaGRmp7o4T0mfhVQwCn4pTzcBt5tZweihV3nzxxHoApoNZBVa/iNgWFE7d4GHgYFm9g2BbovNAM6548D/I3AVo48J9OMXeA0Yf9IOyjeBLc65b8/wd3qEwIoDAiNB3kogmB8/w9d7mcDvssxrpxtPXsA5l+m9z9tmtsx7v7alfQPn3DQC30rmmdly4F1OHeqv8cO2kwpKo3NKWDOz54ElzrlX/K5FpLwo+CVsmdliAv3mFznnjp5qeZHKQsEvIhJm1McvIhJmFPwiImFGwS8iEmYU/CIiYUbBLyISZv4/VmrU8yxF1SoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1963,7 +1963,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEJCAYAAAB7UTvrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAy8klEQVR4nO3dd3xUZfb48c+hht5bgEDA0AkgoQgWqoIg2NiFrwUsi4VdVveHBkQQV1EUxLZrARdR1wJSo6IgKrIqHSWEhBIgQAgECBJqQsr5/TE3cQhpQGYm5bxfr7xy57nt5JnJnLnPvfeMqCrGGGMMQClfB2CMMabwsKRgjDEmkyUFY4wxmSwpGGOMyWRJwRhjTCZLCsYYYzJ5NCmIyOMisk1EIkTkUxHxE5HpIrJdRMJFZLGIVHdbfoKIRIvIDhG5yZOxGWOMuZh46j4FEWkI/AS0UdVzIjIfWAbEAd+raqqIvASgqqEi0gb4FOgK+AMrgRaqmuaRAI0xxlykjBe2X0FEUoCKQJyqrnCbvxa405keCnymqsnAXhGJxpUg1uS08dq1a2vTpk09ErgxxhRXmzZtOqaqdbKb57GkoKoHRWQGsB84B6zIkhAA7gfmOdMNcSWJDLFO2wVEZDQwGiAgIICNGzcWdOjGGFOsici+nOZ57JyCiNTA9ek/ENdwUCURudtt/kQgFfg4oymbzVw0tqWqs1Q1RFVD6tTJNtEZY4y5TJ480dwP2KuqR1U1BVgE9AAQkZHAYOAu/eOkRizQ2G39RrjOPxhjjPESTyaF/UB3EakoIgL0BaJEZAAQCgxR1bNuy4cBw0WkvIgEAkHAeg/GZ4wxJgtPnlNYJyILgM24hol+BWYB24DywLeuXMFaVX1YVbc5VyhFOsuPuZwrj1JSUoiNjSUpKamg/hRj8PPzo1GjRpQtW9bXoRjjUR67JNUbQkJCNOuJ5r1791KlShVq1aqFk3SMuSKqSkJCAqdOnSIwMNDX4RhzxURkk6qGZDev2N3RnJSUZAnBFCgRoVatWnb0aUqEYpcUAEsIpsDZa8qUFMUyKRhjTHGlqny2fj8rI+M9sn1LCl7Sq1evArnRbtWqVQwePLgAIsqfEydO8NZbb3ltf1fitdde4+zZs3kvaEwRtS/hDHe9t47xi7ay5LeDHtmHJQVzgdTU1AseF6akoKqkp6fnOP9ykkLWv9eYwig1LZ3Zq/dw02ur2RqbyAu3teeN4Z08si9LCgXszJkzDBo0iA4dOtCuXTvmzZt30TKPPPIIISEhtG3blmeeeSazfdmyZbRq1Yprr72WsWPH5nlEsH79enr06EGnTp3o0aMHO3bsAOC6667jt99+y1yuZ8+ehIeHc+bMGe6//366dOlCp06dWLp0KQBz585l2LBh3HLLLdx4440X7GP8+PHs3r2bjh078sQTTwAwffp0unTpQnBwcGb8MTExtGrVigcffJB27dpx1113sXLlSnr27ElQUBDr17tuOZkyZQr33HMPffr0ISgoiNmzZ2fuK6fttm7dmkcffZSrr76aAwcOZNt/b7zxBnFxcfTu3ZvevXsDULly5cxtL1iwgFGjRgEwatQo/vGPf9C7d29CQ0PZvXs3AwYMoHPnzlx33XVs37491343xpuiDp3k9rd/YeqyKK69qg7f/uMG/q9bAKVKeeY8l6cL4vnUs19sIzLuZIFus41/VZ65pW2O87/55hv8/f356quvAEhMTLxomalTp1KzZk3S0tLo27cv4eHhtGjRgoceeojVq1cTGBjIiBEj8oylVatWrF69mjJlyrBy5UqeeuopFi5cyIMPPsjcuXN57bXX2LlzJ8nJyQQHB/PUU0/Rp08f5syZw4kTJ+jatSv9+vUDYM2aNYSHh1OzZs0L9jFt2jQiIiIyk8yKFSvYtWsX69evR1UZMmQIq1evJiAggOjoaD7//HNmzZpFly5d+OSTT/jpp58ICwvjhRdeYMmSJQCEh4ezdu1azpw5Q6dOnRg0aBARERE5bnfHjh28//77mUcs2fXf2LFjmTlzJj/88AO1a9fOs+927tzJypUrKV26NH379uWdd94hKCiIdevW8eijj/L999/nuQ1jPCk5NY1/fx/NW6t2U61CWf71f50Y1L6Bxy96KNZJwRfat2/PuHHjCA0NZfDgwVx33XUXLTN//nxmzZpFamoqhw4dIjIykvT0dJo1a5Z5HfyIESOYNWtWrvtKTExk5MiR7Nq1CxEhJSUFgGHDhvHcc88xffp05syZk/kJecWKFYSFhTFjxgzAdfnu/v37Aejfv/9FCSE7K1asYMWKFXTq5Dp0PX36NLt27SIgIIDAwEDat28PQNu2benbty8iQvv27YmJicncxtChQ6lQoQIVKlSgd+/erF+/np9++inH7TZp0oTu3bvn2n/BwcF5xu5u2LBhlC5dmtOnT/PLL78wbNiwzHnJycmXtC1jCtqmfccJXbiV6COnub1TQyYNbkONSuW8su9inRRy+0TvKS1atGDTpk0sW7aMCRMmcOONNzJ58uTM+Xv37mXGjBls2LCBGjVqMGrUKJKSkricmwgnTZpE7969Wbx4MTExMfTq1QuAihUr0r9/f5YuXcr8+fMzT3CrKgsXLqRly5YXbGfdunVUqlQpX/tUVSZMmMBDDz10QXtMTAzly5fPfFyqVKnMx6VKlbpg7D7rJx0RyXW77rHl1H/Zcd9P1mUytpmenk716tUvGG4zxlfOJKcyffkOPlgTg3+1Csy9rwu9Wtb1agx2TqGAxcXFUbFiRe6++27GjRvH5s2bL5h/8uRJKlWqRLVq1YiPj+frr78GXENBe/bsyfxEnd25iKwSExNp2NBVXXzu3LkXzHvwwQcZO3YsXbp0yTwCuOmmm3jzzTczE9Cvv/6a5z6qVKnCqVOnMh/fdNNNzJkzh9OnTwNw8OBBjhw5kud23C1dupSkpCQSEhJYtWoVXbp0yfd2c+q/7GKtV68eUVFRpKens3jx4mxjqVq1KoGBgXz++eeAK+lt2bLlkv4eYwrCjzuPcuOrq/lgTQz3dm/C8sev93pCgGJ+pOALW7du5YknnqBUqVKULVuWt99++4L5HTp0oFOnTrRt25ZmzZrRs2dPACpUqMBbb73FgAEDqF27Nl27ds1zX08++SQjR45k5syZ9OnT54J5nTt3pmrVqtx3332ZbZMmTeKxxx4jODgYVaVp06Z8+eWXue6jVq1a9OzZk3bt2jFw4ECmT59OVFQU11xzDeA6mfvf//6X0qVL56t/ALp27cqgQYPYv38/kyZNwt/fH39//3xtN6f+Axg9ejQDBw6kQYMG/PDDD0ybNo3BgwfTuHFj2rVrl5lwsvr444955JFHeP7550lJSWH48OF06NAh33+PMVfi9zPnee6rSBZtPkjzOpVY8PA1dG6S91CupxS72kdRUVG0bt3aRxFdmdOnT1O5cmVUlTFjxhAUFMTjjz9+WduKi4ujV69ebN++nVKlCs8B4ZQpU6hcuTLjxo3zdSiXrCi/tkzho6os23qYZ8IiOHE2hUd6NWdM76vwK5v/D1iXq0TVPirKZs+eTceOHWnbti2JiYkXja/n14cffki3bt2YOnVqoUoIxhiX+JNJjP5oE2M+2UyDahUI++u1/L8bW3olIeTFjhSMySd7bZkrparM23CAqcuiOJ+azv+7sQX39wykTGnvfnjL7UihWJ5TUFUrYGYKVFH+8GQKh5hjZ5iwaCtr9iTQvVlNpt0eTNPa+bvqz5uKXVLw8/MjISHBymebApPxfQp+fn6+DsUUQalp6bz/cwyvfLuDsqVK8eLt7flzSGOP3ZF8pYpdUmjUqBGxsbEcPXrU16GYYiTjm9eMuRRRh04SujCc8NhE+rWux/O3tqN+tcL94aLYJYWyZcvat2MZY3wqOTWNf30fzdteLlFREIpdUjDGGF+6oETF1Q2ZNMh7JSoKgkdPeYvI4yKyTUQiRORTEfETkZoi8q2I7HJ+13BbfoKIRIvIDhG5yZOxGWNMQTqTnMqUsG3c+c4azp1PY+59XZj5p45FKiGAB48URKQhMBZoo6rnRGQ+MBxoA3ynqtNEZDwwHggVkTbO/LaAP7BSRFqoapqnYjTGmILw486jPLVoK3GJ57i3exOeGNCKyuWL5kCMp6MuA1QQkRSgIhAHTAB6OfM/AFYBocBQ4DNVTQb2ikg00BVY4+EYjTHmspw4e57nvoxi4eZYmtepxOcPXUNIU9+VqCgIHksKqnpQRGYA+4FzwApVXSEi9VT1kLPMIRHJqPjUEFjrtolYp+0CIjIaGA0QEBDgqfCNMSZHWUtU/LX3Vfy1j3dKVHiaJ4ePauD69B8InAA+F5G7c1slm7aL7hhS1VnALHDd0XzlkRpjTP7Fn0xi0pIIVkTG075hNT68vxtt/Kv6OqwC48nho37AXlU9CiAii4AeQLyINHCOEhoAGfWRY4HGbus3wjXcZIwxPpe1RMWEga144Frvl6jwNE8mhf1AdxGpiGv4qC+wETgDjASmOb+XOsuHAZ+IyExcJ5qDgPUejM8YY/JlX4KrRMUvuxPoFliTl+4onCUqCoInzymsE5EFwGYgFfgV17BPZWC+iDyAK3EMc5bf5lyhFOksP8auPDLG+FJaujLnp72ZJSpeuK09w7sU3hIVBaHYVUk1xpiCsP3wSUIXhLMlNpF+revy/K3tC32JivwqcVVSjTHmciWnpvHv76N5yylR8eaITgwOLholKgqCJQVjjHFs2vc7oQvDXSUqOjVk0uCiVaKiIFhSMMaUeGeSU5mxYgdzf4mhQVU/3r+vC71b1s17xWLIkoIxpkRbvfMoExZt5eCJc4y8pmiXqCgIJfcvN8aUaCfOnuf5r6JYsCmWZnUq8fnD19CliJeoKAiWFIwxJc7XWw8xaek2fj97njG9m/O3PkHFokRFQbCkYIwpMY6cTGLS0giWb4unXcOqfHB/F9r6V/N1WIWKJQVjTLGnqny+MZbnv4okOTWd8QNb8WAxLFFRECwpGGOKtf0JZ5mwOJyfoxPo6pSoCCymJSoKgiUFY0yxlJauvP/zXl5ZsZPSpYSpt7VjRJeAYl2ioiBYUjDGFDs7Dp8idGE4vx04QZ9WdZl6WzsaVKvg67CKBEsKxphi43xqOv/+IZq3VkVTxa8srw/vyJAO/iWmREVBsKRgjCkWft3vKlGxM/40t3b0Z/ItbalZwkpUFARLCsaYIu3s+VReWbGTOT/vpX5VP+aMCqFPq3q+DqvIsqRgjCmyfo4+xvhF4Rw4fo67uwcQOqAVVfzK+jqsIs2SgjGmyEk8m8LUZZHM3xhLYO1KzBvdnW7Navk6rGLBkoIxpkj5JuIwk5ZGcPzMeR7p1Zy/97USFQXJkoIxpkg4ciqJKWHbWLb1MG0aVOX9UV1o19BKVBQ0SwrGmEJNVVm4+SDPfRnJuZQ0nripJaOvb0ZZK1HhER5LCiLSEpjn1tQMmAysAt4B/IBU4FFVXe+sMwF4AEgDxqrqck/FZ4wp/A4cP8tTi7fyv13H6NK0BtPuCKZ5ncq+DqtY81hSUNUdQEcAESkNHAQWA7OBZ1X1axG5GXgZ6CUibYDhQFvAH1gpIi1UNc1TMRpjCqe0dOXDNTFMX74DAZ4b2pa7ujWxEhVe4K3ho77AblXdJyIKVHXaqwFxzvRQ4DNVTQb2ikg00BVY46UYjTGFwK54V4mKzftP0KtlHabe1p6G1a1Ehbd4KykMBz51ph8DlovIDKAU0MNpbwisdVsn1mm7gIiMBkYDBAQEeChcY4y3nU9N590fd/Pm99FUKl+aV//cgVs7NrQSFV7m8aQgIuWAIcAEp+kR4HFVXSgifwL+A/QDsnvm9aIG1VnALICQkJCL5htjip7w2BM8uSCc7YdPcUsHf565pQ21K5f3dVglkjeOFAYCm1U13nk8Evi7M/058J4zHQs0dluvEX8MLRljiqFz59N4deVO3vvfHupUKc/se0Po38ZKVPiSN5LCCP4YOgLXG/0NuK5C6gPsctrDgE9EZCauE81BwHovxGeM8YE1uxMYvyicfQlnGdE1gAk3t6KqlajwOY8mBRGpCPQHHnJr/gvwuoiUAZJwzg+o6jYRmQ9E4rpUdYxdeWRM8XMyKYUXl23n0/X7aVKrIp/8pRs9mtf2dVjG4dGkoKpngVpZ2n4COuew/FRgqidjMsb4zsrIeCYu2crRU8n85bpA/tG/JRXKWYmKwsTuaDbGeNyx08k8+0UkX2yJo1X9Ksy+N4TgRtV9HZbJhiUFY4zHqCpLf4vj2S+2cTo5lX/0b8HDNzSnXBkrUVFYWVIwxnhE3IlzTFy8lR92HKVTQHVeviOYoHpVfB2WyYMlBWNMgUpPVz5et49pX28nXeGZW9pw7zVNKW0lKooESwrGmAKz++hpJizcyvqY41wXVJsXbmtP45oVfR2WuQSWFIwxVywlLZ3Z/9vDayt34VemFNPvDObOzo2sREURZEnBGHNFIg4mErownG1xJxnYrj7PDm1L3Sp+vg7LXCZLCsaYy5KUksYb3+3i3dV7qFGxHG/fdTUD2zfwdVjmCllSMMZcsg0xxwldEM6eY2cY1rkRTw9qQ7WKVqKiOLCkYIzJt9PJqbz8zXY+XLOPRjUq8NEDXbkuqI6vwzIFyJKCMSZffthxhImLtnLoZBL39WzKuBtbUqm8vYUUN/aMGmNydfzMeZ77MpLFvx4kqG5lFjzcg85Navg6LOMhlhSMMdlSVb7aeohnlm4j8VwKY/sGMaZ3c8qXsQJ2xZklBWPMReJPJvH0kgi+jYwnuFE1/vtgN1o3qJr3iqbIs6RgjMmkqszbcICpy6I4n5rOxJtbc1/PppQpbQXsSgpLCsYYAPYlnGH8wq2s2ZNA92Y1mXZ7ME1rV/J1WMbLLCkYU8KlpStzftrLK9/uoGypUrx4e3v+HNKYUlbArkSypGBMCbb98ElCF4SzJTaRfq3r8vyt7alfzUpUlGSWFIwpgZJT0/j3D7t564doqlUoy5sjOjE4uIEVsDOWFIwpaX7d/zuhC8PZGX+a2zo1ZNLgNtSsVM7XYZlCwmOXFIhISxH5ze3npIg85sz7m4jsEJFtIvKy2zoTRCTamXeTp2IzpiQ6ez6V576M5Pa3f+FUUirvj+rCq3/uaAnBXMBjRwqqugPoCCAipYGDwGIR6Q0MBYJVNVlE6jrLtAGGA20Bf2CliLRQ1TRPxWhMSfFz9DHGLwrnwPFz3NO9CU8OaEkVPytgZy7mreGjvsBuVd0nItOBaaqaDKCqR5xlhgKfOe17RSQa6Aqs8VKMxhQ7iedSeOGrKOZtPEBg7UrMG92dbs1q+TosU4h5KykMBz51plsA14nIVCAJGKeqG4CGwFq3dWKdtguIyGhgNEBAQIAnYzamSFu+7TCTlkSQcOY8D9/QnMf6BeFX1kpUmNzleE5BREbm0F5WRD7Nbl4Oy5cDhgCfO01lgBpAd+AJYL64LnnI7rIHvahBdZaqhqhqSJ06VrLXmKyOnkpmzMebeeijTdSqXJ4lj/Zk/MBWlhBMvuR2pPB3ESmvqrMyGkSkErAE2H8J+xgIbFbVeOdxLLBIVRVYLyLpQG2nvbHbeo2AuEvYjzElmqqyaPNB/vllJOfOp/HETS0ZfX0zylqJCnMJcksK/YBvRMRPVd8QkTrAMuA7VR1/CfsYwR9DR+BKKn2AVSLSAigHHAPCgE9EZCauE81BwPpL2I8xJVbs72eZuDiCH3cepXOTGrx0RzBX1a3s67BMEZRjUlDV4yLSD/haRPxxnQh+W1XfyO/GRaQi0B94yK15DjBHRCKA88BI56hhm4jMByKBVGCMXXlkTO7S05X/rtvHS19vR4Fnh7Tlnu5NrESFuWziej/OZobI7c5kFWAm8B3wWcZ8VV3k8ejyEBISohs3bvR1GMb4xO6jpxm/MJwNMb9zfYs6vHBbOxrVqOjrsEwRICKbVDUku3m5DR/d4jYdlqVNAZ8nBWNKopS0dGat3sPr3+2iQtnSzBjWgTuubmglKkyByG346D5vBmKMyVvEwUSeXBBO5KGTDGxXn2eHtqVuFStgZwqO1T4ypghISknj9e92MWv1HmpWKsc7d1/NgHYNfB2WKYYsKRhTyG2IOU7ognD2HDvDn0IaMfHmNlSraCUqjGdYUjCmkDqdnMrL32znwzX7aFSjAv99oBvXBtX2dVimmMtXUhCRHkBT9+VV9UMPxWRMiffDjiNMXLSVQyeTuK9nU8bd2JJK5e0znPG8PF9lIvIR0Bz4Dci4b0ABSwrGFLDfz5znuS8jWfTrQa6qW5kFD/egc5Mavg7LlCD5+egRArTRnG5oMMZcMVVl2dbDPBMWwYmzKYztcxVj+lxF+TJWr8h4V36SQgRQHzjk4ViMKZHiTyYxaUkEKyLjad+wGh890I3WDar6OixTQuUnKdQGIkVkPZCc0aiqQzwWlTElgKoyf+MBnv8qivOp6UwY2IoHrg2kjBWwMz6Un6QwxdNBGFPS7E84y4TF4fwcnUC3wJpMuyOYwNqVfB2WMXknBVX90RuBGFMSpKUrc3+JYcbyHZQuJUy9rR0jugRYATtTaOSYFETkJ1W9VkROceGX3QigqmqDnsZcgp3xp3hyQTi/HThBn1Z1ef7WdvhXr+DrsIy5QG61j651flfxXjjGFD/nU9N558fdvPn9LiqXL8PrwzsypIO/FbAzhZLdDWOMB205cILQheFsP3yKIR38eeaWNtSqXN7XYRmTI0sKxnjAufNpvLpyJ+/9bw91q/jx3r0h9GtTz9dhGZMnSwrGFLA1uxOYsCicmISzjOgawISbW1HVzwrYmaIhv7WP6gNdcZ1w3qCqhz0alTFF0MmkFKZ9vZ1P1u2nSa2KfPKXbvRobgXsTNGSn9pHDwKTge9xXXn0poj8U1XneDo4Y4qK76Limbg4giOnkhh9fTMe79eCCuWsRIUpevJzpPAE0ElVEwBEpBbwC5BrUhCRlsA8t6ZmwGRVfc2ZPw6YDtRR1WNO2wTgAVyF98aq6vJL+muM8bKE08k8+0UkYVviaFmvCu/c05mOjav7OixjLlt+kkIscMrt8SngQF4rqeoOoCOAiJQGDgKLnceNgf7A/ozlRaQNMBxoC/gDK0WkhaqmYUwho6qEbYnj2S8iOZWUwuP9WvBIr+aUK2MlKkzRlp+kcBBYJyJLcZ1TGAqsF5F/AKjqzHxsoy+wW1X3OY9fBZ4ElrotMxT4TFWTgb0iEo3rPMaafP0lxnjJocRzTFoSwcqoI3RoXJ2X7wimZX27nccUD/lJCrudnwwZb+SX8l8wHPgUQESGAAdVdUuWm3caAmvdHsc6bRcQkdHAaICAgIBLCMGYK5Oerny24QAvLosiJT2dpwe15r6egZS2EhWmGMlP7aNnr2QHIlIOGAJMEJGKwETgxuwWzW732cQzC5gFEBISYt/xYLwi5tgZxi8KZ+2e4/RoXotptwcTUKuir8MypsDl5+qjEFxv5E248Os4g/O5j4HAZlWNF5H2QCCQcZTQCNgsIl1xHRk0dluvERCXz30Y4xGpaem8/3MMr3y7g7KlSjHt9vb8uUtjK1Fhiq38DB99jOsKpK1A+mXsYwTO0JGqbgXqZswQkRggRFWPiUgY8ImIzMR1ojkIWH8Z+zOmQGw/fJLQBeFsiU2kX+t6PH9rO+pX8/N1WMZ4VH6SwlFVDbucjTvDRf2Bh/JaVlW3ich8IBJIBcbYlUfGF5JT0/j3D7t564doqlUoy5sjOjE4uIEdHZgSIT9J4RkReQ/4jgu/eW1RXiuq6lmgVi7zm2Z5PBWYmo+YjPGIX/f/TujCcHbGn+a2Tg2ZNLgNNSuV83VYxnhNfpLCfUAroCx/DB8pkGdSMKaoOHs+lVdW7GTOz3upX9WPOaNC6NPKCtiZkic/SaGDqrb3eCTG+Mgv0ccYv2gr+4+f5e7uAYQOaEUVK2BnSqj8JIW1ItJGVSM9Ho0xXpR4LoUXl0Xx2YYDNK1Vkc9Gd6d7sxxHO40pEfKTFK4FRorIXlznFDK+jjO/l6QaU+h8GxnP00u2cvRUMg/d4Cpg51fWCtgZk5+kMMDjURjjJcdOJzMlbBtfhh+iVf0qzL43hOBG1X0dljGFRn7uaN4nItcCQar6vojUASp7PjRjCo6qsvS3OJ79YhtnktP4f/1b8NANVsDOmKzyc0fzM0AI0BJ4H9dVSP8Feno2NGMKRtyJczy9JILvtx+hU4CrgF1QPStgZ0x28jN8dBvQCdgMoKpxImL/UabQS09XPt2wnxeXbSctXZk8uA0jezS1AnbG5CI/SeG8qqqIKICIVPJwTMZcsb3HzjB+YTjr9h6n51W1ePE2K2BnTH7kJynMF5F3geoi8hfgfuA9z4ZlzOVJTUtnzs97eWXFTsqVKcXLdwQzLKSRlagwJp/yc6J5hoj0B07iOq8wWVW/9XhkxlyiqEMnCV0YTnhsIv3buArY1atqBeyMuRT5OdH8kqqGAt9m02aMz2UtYPev/+vEoPZWwM6Yy5Gf4aP+QNYEMDCbNmO8LmsBu8mD21DDCtgZc9lyTAoi8gjwKNBMRMLdZlUBfvZ0YMbkJmsBu/dHdaF3q7p5r2iMyVVuRwqfAF8DLwLj3dpPqepxj0ZlTC6sgJ0xnpNjUlDVRCAR1zenGeNzVsDOGM/LzzkFY3zOCtgZ4x2WFEyhlnA6mSlfRPLFljgrYGeMF1hSMIWSqhK2JY4pYVbAzhhv8lhSEJGWwDy3pmbAZKAhcAtwHtgN3KeqJ5x1JgAPAGnAWFVd7qn4TOHlXsCuY+PqTL/TCtgZ4y0eSwqqugPoCCAipYGDwGJcd0VPUNVUEXkJmACEikgbYDjQFvAHVopIC1VN81SMpnDJWsBu0uA2jLICdsZ4lbeGj/oCu1V1H7DPrX0tcKczPRT4TFWTgb0iEg10BdZ4KUbjQzHHzhBqBeyM8TlvJYXhwKfZtN/PH0NMDXEliQyxTtsFRGQ0MBogICCgYKM0Xpe1gN1Ld7TnTyGNrUSFMT7i8aQgIuWAIbiGidzbJwKpwMcZTdmsrhc1qM4CZgGEhIRcNN8UHdsPnyR0QThbrICdMYWGN44UBgKbVTU+o0FERgKDgb6qmvHGHgs0dluvERDnhfiMl2UtYPfmiE4MDrYCdsYUBt5ICiNwGzoSkQG4iundoKpn3ZYLAz4RkZm4TjQHAeu9EJ/xIvcCdrd29GfyLW2paQXsjCk0PJoURKQiriqrD7k1/wsoD3zrfDJcq6oPq+o2EZkPROIaVhpjVx4VH+fOp/HKih3M+Xkv9ar6MWdUCH1a1fN1WMaYLDyaFJwjgVpZ2q7KZfmpwFRPxmS875fdxxi/0FXA7q5uAYwfaAXsjCms7I5m4zEnk1J4cdl2Pl2/3wrYGVNEWFIwHvFdVDwTF0dw5FQSo693FbCrUM4K2BlT2FlSMAUq4XQy//wykqW/uQrYvXtPZzo0ru7rsIwx+WRJwRQIVeWL8ENMCdvGqaQUHu/Xgkd6WQE7Y4oaSwrmih1OTOLpJRGsjIqnQ+PqvHxHMC3rWwE7Y4oiSwrmsqkq8zYcYOqyKFLS0nl6UGvu6xloBeyMKcIsKZjLsj/hLOMXhfPL7gSuaVaLaXe0p0mtSr4OyxhzhSwpmEuSlq7M/SWGGct3UKaU8OLt7RnexQrYGVNcWFIw+bYr/hRPLgzn1/0n6NuqLs/f1o4G1Sr4OixjTAGypGDylJKWzturdvOv76Op7FeG14d3ZEgHfzs6MKYYsqRgcrU1NpEnFmxh++FT3NLBnym3tKFW5fK+DssY4yGWFEy2klLSeHXlTmav3kOdKuWZfW8I/dtYATtjijtLCuYi6/ceJ3RhOHuPnWF4l8ZMuLk11SpYATtjSgJLCibT6eRUXvp6Ox+t3UfjmhX4+MFu9Lyqtq/DMsZ4kSUFA8CqHUd4atFWDp1M4v6egYy7qQUVy9nLw5iSxv7rS7gTZ8/zzy8jWbT5IFfVrczCR3pwdUANX4dljPERSwol2LKth5i8NIITZ1P4W5+r+GufqyhfxspbG1OSWVIogY6cSmLykm18s+0w7RpW5cP7u9HGv6qvwzLGFAKWFEoQVWXBplie+zKSpNR0Qge04i/XBVKmtJW3Nsa4eCwpiEhLYJ5bUzNgMvCh094UiAH+pKq/O+tMAB4A0oCxqrrcU/GVNLG/n+WpxRGs3nmULk1r8NIdwTSrU9nXYRljChmPJQVV3QF0BBCR0sBBYDEwHvhOVaeJyHjncaiItAGGA20Bf2CliLRQ1TRPxVgSpKcrH63dx0vfbAfgn0Pbcne3JpSy8tbGmGx4a/ioL7BbVfeJyFCgl9P+AbAKCAWGAp+pajKwV0Siga7AGi/FWOzsPnqa8QvD2RDzO9cF1ebF29vTqEZFX4dljCnEvJUUhgOfOtP1VPUQgKoeEpG6TntDYK3bOrFO2wVEZDQwGiAgIMBjARdlqWnpzP7fXl5duRO/MqWYfmcwd3ZuZAXsjDF58nhSEJFywBBgQl6LZtOmFzWozgJmAYSEhFw0v6SLjDvJkwu3EHHwJAPa1ueft7albhU/X4dljCkivHGkMBDYrKrxzuN4EWngHCU0AI447bFAY7f1GgFxXoivWEhOTeNf30fz9qrdVK9Ylrfuupqb2zfwdVjGmCLGG0lhBH8MHQGEASOBac7vpW7tn4jITFwnmoOA9V6Ir8jbvP93nlwQTvSR09x+dUMmDWpDjUrlfB2WMaYI8mhSEJGKQH/gIbfmacB8EXkA2A8MA1DVbSIyH4gEUoExduVR7s6eT2XG8p28/8teGlT14/37utC7Zd28VzTGmBx4NCmo6lmgVpa2BFxXI2W3/FRgqidjKi5+iT7G+EVb2X/8LHd3DyB0QCuq+Fl5a2PMlbE7mouYk0kpvPBVFJ9tOEDTWhWZN7o73ZrVyntFY4zJB0sKRcjKyHgmLtnK0VPJPHR9Mx7r14IK5ayAnTGm4FhSKAISTifz7BeRhG2Jo1X9Ksy6J4QOjav7OixjTDFkSaEQU1W+CD/ElLBtnEpK4bF+QTza6yrKlbECdsYYz7CkUEgdTkzi6SURrIyKp0Ojarx8Z3da1q/i67CMMcWcJYVCRlWZt+EAU5dFcT41nYk3t+b+awMpbQXsjDFeYEmhENmfcJYJi8P5OTqBboE1eemOYJrWruTrsIwxJYglhUIgLV2Z+0sMM5bvoHQpYept7RjRJcDKWxtjvM6Sgo9FHznFkwvC2bz/BL1b1mHqbe3xr17B12EZY0ooSwo+kpKWzrs/7uaN76KpWL40r/65A7d2bGjlrY0xPmVJwQciDiby5IJwIg+dZFD7BkwZ0pY6Vcr7OixjjLGk4E1JKWm88d0u3l29h5qVyvHO3Z0Z0K6+r8MyxphMlhS8ZNO+4zy5IJzdR89wZ+dGTBrUhmoVrYCdMaZwsaTgYWeSU5m+fAcfrInBv1oFPri/Kze0qOPrsIwxJluWFDzop13HGL8onNjfz3HvNU14ckArKpe3LjfGFF72DuUBiedSmPpVJPM3xhJYuxLzH7qGroE1fR2WMcbkyZJCAVux7TBPL4kg4cx5Hr6hOY/1C8KvrJW3NsYUDZYUCkjC6WSeCdvGl+GHaFW/Cv8Z2YX2jar5OixjjLkklhSukKoStiWOKWHbOJ2cyj/6t+DhG5pbeWtjTJHk0aQgItWB94B2gAL3A+eAdwA/IBV4VFXXO8tPAB4A0oCxqrrck/FdqcOJSUxcvJXvth+hQ+PqTL8zmBb1rLy1Mabo8vSRwuvAN6p6p4iUAyoC84FnVfVrEbkZeBnoJSJtgOFAW8AfWCkiLVQ1zcMxXjJV5bMNB3jhqyhS0tN5elBr7utp5a2NMUWfx5KCiFQFrgdGAajqeeC8iChQ1VmsGhDnTA8FPlPVZGCviEQDXYE1norxcuxPOMv4ReH8sjuB7s1qMu12K29tjCk+PHmk0Aw4CrwvIh2ATcDfgceA5SIyAygF9HCWbwisdVs/1mm7gIiMBkYDBAQEeCr2i1h5a2NMSeDJpFAGuBr4m6quE5HXgfG4jg4eV9WFIvIn4D9APyC7d1e9qEF1FjALICQk5KL5nhB95BRPLAjnVytvbYwp5jyZFGKBWFVd5zxegCspXIvriAHgc1wnojOWb+y2fiP+GFryiazlrV/7c0eGdvS38tbGmGLLY0lBVQ+LyAERaamqO4C+QCSuYaUbgFVAH2CXs0oY8ImIzMR1ojkIWO+p+PJyQXnr4AY8O6QttStbeWtjTPHm6auP/gZ87Fx5tAe4D1gKvC4iZYAknPMDqrpNRObjShypwBhfXHmUtbz1u/d05qa2Vt7aGFMyiKpXhuU9IiQkRDdu3Fhg23Mvbz2scyOetvLWxphiSEQ2qWpIdvPsjmYuLm/94f1dud7KWxtjSqASnxSsvLUxxvyhxL77JZ5L4YWvopi38YCVtzbGGEeJTArhsSf4y4cbOXoq2cpbG2OMmxKZFAJqVqRFvSrMvjeE4EbVfR2OMcYUGiUyKVSvWI6PHujm6zCMMabQsaL/xhhjMllSMMYYk8mSgjHGmEyWFIwxxmSypGCMMSaTJQVjjDGZLCkYY4zJZEnBGGNMpiJdOltEjgL7fB1HLmoDx3wdRC4svitj8V0Zi+/KXEl8TVQ121LQRTopFHYisjGnmuWFgcV3ZSy+K2PxXRlPxWfDR8YYYzJZUjDGGJPJkoJnzfJ1AHmw+K6MxXdlLL4r45H47JyCMcaYTHakYIwxJpMlBWOMMZksKRQAEWksIj+ISJSIbBORvzvtU0TkoIj85vzc7MMYY0RkqxPHRqetpoh8KyK7nN81fBRbS7c++k1ETorIY77sPxGZIyJHRCTCrS3H/hKRCSISLSI7ROQmH8U3XUS2i0i4iCwWkepOe1MROefWj+/4KL4cn89C0n/z3GKLEZHfnHZf9F9O7ymefw2qqv1c4Q/QALjama4C7ATaAFOAcb6Oz4krBqidpe1lYLwzPR54qRDEWRo4DDTxZf8B1wNXAxF59ZfzXG8BygOBwG6gtA/iuxEo40y/5BZfU/flfNh/2T6fhaX/ssx/BZjsw/7L6T3F469BO1IoAKp6SFU3O9OngCigoW+jypehwAfO9AfArb4LJVNfYLeq+vROdVVdDRzP0pxTfw0FPlPVZFXdC0QDXb0dn6quUNVU5+FaoJEnY8hNDv2Xk0LRfxlERIA/AZ96Mobc5PKe4vHXoCWFAiYiTYFOwDqn6a/O4fwcXw3POBRYISKbRGS001ZPVQ+B60UI1PVZdH8YzoX/jIWl/yDn/moIHHBbLhbffyi4H/ja7XGgiPwqIj+KyHW+Corsn8/C1n/XAfGqusutzWf9l+U9xeOvQUsKBUhEKgMLgcdU9STwNtAc6AgcwnVI6is9VfVqYCAwRkSu92Es2RKRcsAQ4HOnqTD1X24kmzafXestIhOBVOBjp+kQEKCqnYB/AJ+ISFUfhJbT81mo+g8YwYUfTHzWf9m8p+S4aDZtl9WHlhQKiIiUxfXkfayqiwBUNV5V01Q1HZiNhw+Jc6Oqcc7vI8BiJ5Z4EWkA4Pw+4qv4HAOBzaoaD4Wr/xw59Vcs0NhtuUZAnJdjA0BERgKDgbvUGWx2hhQSnOlNuMabW3g7tlyez8LUf2WA24F5GW2+6r/s3lPwwmvQkkIBcMYg/wNEqepMt/YGbovdBkRkXdcbRKSSiFTJmMZ1QjICCANGOouNBJb6Ij43F3xCKyz95yan/goDhotIeREJBIKA9d4OTkQGAKHAEFU969ZeR0RKO9PNnPj2+CC+nJ7PQtF/jn7AdlWNzWjwRf/l9J6CN16D3jyjXlx/gGtxHaqFA785PzcDHwFbnfYwoIGP4muG68qELcA2YKLTXgv4Dtjl/K7pwz6sCCQA1dzafNZ/uJLTISAF16ewB3LrL2Airk+QO4CBPoovGte4csZr8B1n2Tuc530LsBm4xUfx5fh8Fob+c9rnAg9nWdYX/ZfTe4rHX4NW5sIYY0wmGz4yxhiTyZKCMcaYTJYUjDHGZLKkYIwxJpMlBWOMMZksKRivcCpNFsh9BiLSS0R65HPZGBGpnccyo0TEv4BiqyMiP4lIhIjc6ta+NKd9iMjDInJvQezf2wqy70zhYEnBFEW9gHwlhXwaBRTUG9sIXIXKrgGeABCRW3DdqZ3tHaaq+o6qfnilO864wcrLRlFwfWcKAUsKxptKi8hspz78ChGpACAizUXkG6dY3/9EpJXTfouIrHMKka0UkXpOcbCHgced2vYXFCcTkVrOtn8VkXdxasJkPVIRkXHiqu9/JxACfOxsb5CILHZbrr+ILCL/UoAKuEoYpztlEx4Dpue0ghPHOGd6lYi8JCLrRWRnxt8nIqVFZIa4vhMjXET+5rTHiMhkEfkJGCYiN4rIGhHZLCKfO7VzMpZ7wZm3UUSuFpHlIrJbRB52i+UJEdng7ONZt76LyvrcZdN3FS6hn0xh5ek78+zHflQza9KnAh2dx/OBu53p74AgZ7ob8L0zXYM/vkf8QeAVZ3oKOXzPAvAGf9TBH4TrrtDaZKmJD4wDpjjTq4AQZ1qA7UAd5/EnXMIdrEA14CtgI64y4GOBkXmsk/n3OLFk/J03Ayud6Udw1cHJ+L6Ems7vGOBJZ7o2sBqo5DwOdeuLGOARZ/pVXHfKVgHqAEec9htxfRm84PrA+CWu7x3I7bnL7Dv7KR4/ZbLJE8Z4yl5V/c2Z3gQ0dT7J9gA+d5V7AVyfssFV1GueUzOnHLA3H/u4HldBM1T1KxH5/VICVFUVkY+Au0XkfVzDQPke71fVRFzJCHGVhg4FbheR2biS3CuquiaPzWQcmWzC9YYMrpo876jzfQmq6v5dABnF27rj+rKVn52+LAe47yvM+b0VqKyuOv2nRCRJXN/SdqPz86uzXGVcNXT2k81zl8ffYIooSwrGm5LdptNwDbOUAk6oasdsln8TmKmqYSLSC9cn6vzIrnZLKhcOl/rlsv77wBdAEvC5/vHFNQCISDfgXefhZFUNI3uTgam4zjNswnXUsRTonUf8Gf2Uxh//o0LOpZDPuC3zraqOyGO76Vz4XKQ7+xHgRVV9130lZ8guu+fOFEN2TsH4lLpqxO8VkWHgqg4pIh2c2dWAg870SLfVTuEa+sjOauAuZ1sDcX06B4gH6jrnHMrjKi+d7fbUdUI4DngaV4G0rDGvU9WOzk+2CUFEggB/Vf0RV7G/dFxv6rklo9ysAB52zlEgIjWzWWYt0FNErnKWqSgil1LieTlwv9t5iIYiktcXL+X2XJgiyJKCKQzuAh4QkYwqrkOd9im4hpX+BxxzW/4L4LbsTjQDzwLXi8hmXEMh+wFUNQX4J65vr/oS13mDDHOBd7KcLP0YOKCqkZf5N03FlVTAVZFzFK437RmXub33cP0t4U4//V/WBVT1qLOfT0Uk3Nlfq/zuQFVX4DqaWSMiW4EF5P2GP5eL+84UYVYl1ZhsiMi/gF9V9T++jsUYb7KkYEwWIrIJ1zh9f1VNzmt5Y4oTSwrGGGMy2TkFY4wxmSwpGGOMyWRJwRhjTCZLCsYYYzJZUjDGGJPp/wOc8xsMOIWo5gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEJCAYAAAB7UTvrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAy8klEQVR4nO3dd3xUZfb48c+hht5bgEDA0AkgoQgWqoIg2NiFrwUsi4VdVveHBkQQV1EUxLZrARdR1wJSo6IgKrIqHSWEhBIgQAgECBJqQsr5/TE3cQhpQGYm5bxfr7xy57nt5JnJnLnPvfeMqCrGGGMMQClfB2CMMabwsKRgjDEmkyUFY4wxmSwpGGOMyWRJwRhjTCZLCsYYYzJ5NCmIyOMisk1EIkTkUxHxE5HpIrJdRMJFZLGIVHdbfoKIRIvIDhG5yZOxGWOMuZh46j4FEWkI/AS0UdVzIjIfWAbEAd+raqqIvASgqqEi0gb4FOgK+AMrgRaqmuaRAI0xxlykjBe2X0FEUoCKQJyqrnCbvxa405keCnymqsnAXhGJxpUg1uS08dq1a2vTpk09ErgxxhRXmzZtOqaqdbKb57GkoKoHRWQGsB84B6zIkhAA7gfmOdMNcSWJDLFO2wVEZDQwGiAgIICNGzcWdOjGGFOsici+nOZ57JyCiNTA9ek/ENdwUCURudtt/kQgFfg4oymbzVw0tqWqs1Q1RFVD6tTJNtEZY4y5TJ480dwP2KuqR1U1BVgE9AAQkZHAYOAu/eOkRizQ2G39RrjOPxhjjPESTyaF/UB3EakoIgL0BaJEZAAQCgxR1bNuy4cBw0WkvIgEAkHAeg/GZ4wxJgtPnlNYJyILgM24hol+BWYB24DywLeuXMFaVX1YVbc5VyhFOsuPuZwrj1JSUoiNjSUpKamg/hRj8PPzo1GjRpQtW9bXoRjjUR67JNUbQkJCNOuJ5r1791KlShVq1aqFk3SMuSKqSkJCAqdOnSIwMNDX4RhzxURkk6qGZDev2N3RnJSUZAnBFCgRoVatWnb0aUqEYpcUAEsIpsDZa8qUFMUyKRhjTHGlqny2fj8rI+M9sn1LCl7Sq1evArnRbtWqVQwePLgAIsqfEydO8NZbb3ltf1fitdde4+zZs3kvaEwRtS/hDHe9t47xi7ay5LeDHtmHJQVzgdTU1AseF6akoKqkp6fnOP9ykkLWv9eYwig1LZ3Zq/dw02ur2RqbyAu3teeN4Z08si9LCgXszJkzDBo0iA4dOtCuXTvmzZt30TKPPPIIISEhtG3blmeeeSazfdmyZbRq1Yprr72WsWPH5nlEsH79enr06EGnTp3o0aMHO3bsAOC6667jt99+y1yuZ8+ehIeHc+bMGe6//366dOlCp06dWLp0KQBz585l2LBh3HLLLdx4440X7GP8+PHs3r2bjh078sQTTwAwffp0unTpQnBwcGb8MTExtGrVigcffJB27dpx1113sXLlSnr27ElQUBDr17tuOZkyZQr33HMPffr0ISgoiNmzZ2fuK6fttm7dmkcffZSrr76aAwcOZNt/b7zxBnFxcfTu3ZvevXsDULly5cxtL1iwgFGjRgEwatQo/vGPf9C7d29CQ0PZvXs3AwYMoHPnzlx33XVs37491343xpuiDp3k9rd/YeqyKK69qg7f/uMG/q9bAKVKeeY8l6cL4vnUs19sIzLuZIFus41/VZ65pW2O87/55hv8/f356quvAEhMTLxomalTp1KzZk3S0tLo27cv4eHhtGjRgoceeojVq1cTGBjIiBEj8oylVatWrF69mjJlyrBy5UqeeuopFi5cyIMPPsjcuXN57bXX2LlzJ8nJyQQHB/PUU0/Rp08f5syZw4kTJ+jatSv9+vUDYM2aNYSHh1OzZs0L9jFt2jQiIiIyk8yKFSvYtWsX69evR1UZMmQIq1evJiAggOjoaD7//HNmzZpFly5d+OSTT/jpp58ICwvjhRdeYMmSJQCEh4ezdu1azpw5Q6dOnRg0aBARERE5bnfHjh28//77mUcs2fXf2LFjmTlzJj/88AO1a9fOs+927tzJypUrKV26NH379uWdd94hKCiIdevW8eijj/L999/nuQ1jPCk5NY1/fx/NW6t2U61CWf71f50Y1L6Bxy96KNZJwRfat2/PuHHjCA0NZfDgwVx33XUXLTN//nxmzZpFamoqhw4dIjIykvT0dJo1a5Z5HfyIESOYNWtWrvtKTExk5MiR7Nq1CxEhJSUFgGHDhvHcc88xffp05syZk/kJecWKFYSFhTFjxgzAdfnu/v37Aejfv/9FCSE7K1asYMWKFXTq5Dp0PX36NLt27SIgIIDAwEDat28PQNu2benbty8iQvv27YmJicncxtChQ6lQoQIVKlSgd+/erF+/np9++inH7TZp0oTu3bvn2n/BwcF5xu5u2LBhlC5dmtOnT/PLL78wbNiwzHnJycmXtC1jCtqmfccJXbiV6COnub1TQyYNbkONSuW8su9inRRy+0TvKS1atGDTpk0sW7aMCRMmcOONNzJ58uTM+Xv37mXGjBls2LCBGjVqMGrUKJKSkricmwgnTZpE7969Wbx4MTExMfTq1QuAihUr0r9/f5YuXcr8+fMzT3CrKgsXLqRly5YXbGfdunVUqlQpX/tUVSZMmMBDDz10QXtMTAzly5fPfFyqVKnMx6VKlbpg7D7rJx0RyXW77rHl1H/Zcd9P1mUytpmenk716tUvGG4zxlfOJKcyffkOPlgTg3+1Csy9rwu9Wtb1agx2TqGAxcXFUbFiRe6++27GjRvH5s2bL5h/8uRJKlWqRLVq1YiPj+frr78GXENBe/bsyfxEnd25iKwSExNp2NBVXXzu3LkXzHvwwQcZO3YsXbp0yTwCuOmmm3jzzTczE9Cvv/6a5z6qVKnCqVOnMh/fdNNNzJkzh9OnTwNw8OBBjhw5kud23C1dupSkpCQSEhJYtWoVXbp0yfd2c+q/7GKtV68eUVFRpKens3jx4mxjqVq1KoGBgXz++eeAK+lt2bLlkv4eYwrCjzuPcuOrq/lgTQz3dm/C8sev93pCgGJ+pOALW7du5YknnqBUqVKULVuWt99++4L5HTp0oFOnTrRt25ZmzZrRs2dPACpUqMBbb73FgAEDqF27Nl27ds1zX08++SQjR45k5syZ9OnT54J5nTt3pmrVqtx3332ZbZMmTeKxxx4jODgYVaVp06Z8+eWXue6jVq1a9OzZk3bt2jFw4ECmT59OVFQU11xzDeA6mfvf//6X0qVL56t/ALp27cqgQYPYv38/kyZNwt/fH39//3xtN6f+Axg9ejQDBw6kQYMG/PDDD0ybNo3BgwfTuHFj2rVrl5lwsvr444955JFHeP7550lJSWH48OF06NAh33+PMVfi9zPnee6rSBZtPkjzOpVY8PA1dG6S91CupxS72kdRUVG0bt3aRxFdmdOnT1O5cmVUlTFjxhAUFMTjjz9+WduKi4ujV69ebN++nVKlCs8B4ZQpU6hcuTLjxo3zdSiXrCi/tkzho6os23qYZ8IiOHE2hUd6NWdM76vwK5v/D1iXq0TVPirKZs+eTceOHWnbti2JiYkXja/n14cffki3bt2YOnVqoUoIxhiX+JNJjP5oE2M+2UyDahUI++u1/L8bW3olIeTFjhSMySd7bZkrparM23CAqcuiOJ+azv+7sQX39wykTGnvfnjL7UihWJ5TUFUrYGYKVFH+8GQKh5hjZ5iwaCtr9iTQvVlNpt0eTNPa+bvqz5uKXVLw8/MjISHBymebApPxfQp+fn6+DsUUQalp6bz/cwyvfLuDsqVK8eLt7flzSGOP3ZF8pYpdUmjUqBGxsbEcPXrU16GYYiTjm9eMuRRRh04SujCc8NhE+rWux/O3tqN+tcL94aLYJYWyZcvat2MZY3wqOTWNf30fzdteLlFREIpdUjDGGF+6oETF1Q2ZNMh7JSoKgkdPeYvI4yKyTUQiRORTEfETkZoi8q2I7HJ+13BbfoKIRIvIDhG5yZOxGWNMQTqTnMqUsG3c+c4azp1PY+59XZj5p45FKiGAB48URKQhMBZoo6rnRGQ+MBxoA3ynqtNEZDwwHggVkTbO/LaAP7BSRFqoapqnYjTGmILw486jPLVoK3GJ57i3exOeGNCKyuWL5kCMp6MuA1QQkRSgIhAHTAB6OfM/AFYBocBQ4DNVTQb2ikg00BVY4+EYjTHmspw4e57nvoxi4eZYmtepxOcPXUNIU9+VqCgIHksKqnpQRGYA+4FzwApVXSEi9VT1kLPMIRHJqPjUEFjrtolYp+0CIjIaGA0QEBDgqfCNMSZHWUtU/LX3Vfy1j3dKVHiaJ4ePauD69B8InAA+F5G7c1slm7aL7hhS1VnALHDd0XzlkRpjTP7Fn0xi0pIIVkTG075hNT68vxtt/Kv6OqwC48nho37AXlU9CiAii4AeQLyINHCOEhoAGfWRY4HGbus3wjXcZIwxPpe1RMWEga144Frvl6jwNE8mhf1AdxGpiGv4qC+wETgDjASmOb+XOsuHAZ+IyExcJ5qDgPUejM8YY/JlX4KrRMUvuxPoFliTl+4onCUqCoInzymsE5EFwGYgFfgV17BPZWC+iDyAK3EMc5bf5lyhFOksP8auPDLG+FJaujLnp72ZJSpeuK09w7sU3hIVBaHYVUk1xpiCsP3wSUIXhLMlNpF+revy/K3tC32JivwqcVVSjTHmciWnpvHv76N5yylR8eaITgwOLholKgqCJQVjjHFs2vc7oQvDXSUqOjVk0uCiVaKiIFhSMMaUeGeSU5mxYgdzf4mhQVU/3r+vC71b1s17xWLIkoIxpkRbvfMoExZt5eCJc4y8pmiXqCgIJfcvN8aUaCfOnuf5r6JYsCmWZnUq8fnD19CliJeoKAiWFIwxJc7XWw8xaek2fj97njG9m/O3PkHFokRFQbCkYIwpMY6cTGLS0giWb4unXcOqfHB/F9r6V/N1WIWKJQVjTLGnqny+MZbnv4okOTWd8QNb8WAxLFFRECwpGGOKtf0JZ5mwOJyfoxPo6pSoCCymJSoKgiUFY0yxlJauvP/zXl5ZsZPSpYSpt7VjRJeAYl2ioiBYUjDGFDs7Dp8idGE4vx04QZ9WdZl6WzsaVKvg67CKBEsKxphi43xqOv/+IZq3VkVTxa8srw/vyJAO/iWmREVBsKRgjCkWft3vKlGxM/40t3b0Z/ItbalZwkpUFARLCsaYIu3s+VReWbGTOT/vpX5VP+aMCqFPq3q+DqvIsqRgjCmyfo4+xvhF4Rw4fo67uwcQOqAVVfzK+jqsIs2SgjGmyEk8m8LUZZHM3xhLYO1KzBvdnW7Navk6rGLBkoIxpkj5JuIwk5ZGcPzMeR7p1Zy/97USFQXJkoIxpkg4ciqJKWHbWLb1MG0aVOX9UV1o19BKVBQ0SwrGmEJNVVm4+SDPfRnJuZQ0nripJaOvb0ZZK1HhER5LCiLSEpjn1tQMmAysAt4B/IBU4FFVXe+sMwF4AEgDxqrqck/FZ4wp/A4cP8tTi7fyv13H6NK0BtPuCKZ5ncq+DqtY81hSUNUdQEcAESkNHAQWA7OBZ1X1axG5GXgZ6CUibYDhQFvAH1gpIi1UNc1TMRpjCqe0dOXDNTFMX74DAZ4b2pa7ujWxEhVe4K3ho77AblXdJyIKVHXaqwFxzvRQ4DNVTQb2ikg00BVY46UYjTGFwK54V4mKzftP0KtlHabe1p6G1a1Ehbd4KykMBz51ph8DlovIDKAU0MNpbwisdVsn1mm7gIiMBkYDBAQEeChcY4y3nU9N590fd/Pm99FUKl+aV//cgVs7NrQSFV7m8aQgIuWAIcAEp+kR4HFVXSgifwL+A/QDsnvm9aIG1VnALICQkJCL5htjip7w2BM8uSCc7YdPcUsHf565pQ21K5f3dVglkjeOFAYCm1U13nk8Evi7M/058J4zHQs0dluvEX8MLRljiqFz59N4deVO3vvfHupUKc/se0Po38ZKVPiSN5LCCP4YOgLXG/0NuK5C6gPsctrDgE9EZCauE81BwHovxGeM8YE1uxMYvyicfQlnGdE1gAk3t6KqlajwOY8mBRGpCPQHHnJr/gvwuoiUAZJwzg+o6jYRmQ9E4rpUdYxdeWRM8XMyKYUXl23n0/X7aVKrIp/8pRs9mtf2dVjG4dGkoKpngVpZ2n4COuew/FRgqidjMsb4zsrIeCYu2crRU8n85bpA/tG/JRXKWYmKwsTuaDbGeNyx08k8+0UkX2yJo1X9Ksy+N4TgRtV9HZbJhiUFY4zHqCpLf4vj2S+2cTo5lX/0b8HDNzSnXBkrUVFYWVIwxnhE3IlzTFy8lR92HKVTQHVeviOYoHpVfB2WyYMlBWNMgUpPVz5et49pX28nXeGZW9pw7zVNKW0lKooESwrGmAKz++hpJizcyvqY41wXVJsXbmtP45oVfR2WuQSWFIwxVywlLZ3Z/9vDayt34VemFNPvDObOzo2sREURZEnBGHNFIg4mErownG1xJxnYrj7PDm1L3Sp+vg7LXCZLCsaYy5KUksYb3+3i3dV7qFGxHG/fdTUD2zfwdVjmCllSMMZcsg0xxwldEM6eY2cY1rkRTw9qQ7WKVqKiOLCkYIzJt9PJqbz8zXY+XLOPRjUq8NEDXbkuqI6vwzIFyJKCMSZffthxhImLtnLoZBL39WzKuBtbUqm8vYUUN/aMGmNydfzMeZ77MpLFvx4kqG5lFjzcg85Navg6LOMhlhSMMdlSVb7aeohnlm4j8VwKY/sGMaZ3c8qXsQJ2xZklBWPMReJPJvH0kgi+jYwnuFE1/vtgN1o3qJr3iqbIs6RgjMmkqszbcICpy6I4n5rOxJtbc1/PppQpbQXsSgpLCsYYAPYlnGH8wq2s2ZNA92Y1mXZ7ME1rV/J1WMbLLCkYU8KlpStzftrLK9/uoGypUrx4e3v+HNKYUlbArkSypGBMCbb98ElCF4SzJTaRfq3r8vyt7alfzUpUlGSWFIwpgZJT0/j3D7t564doqlUoy5sjOjE4uIEVsDOWFIwpaX7d/zuhC8PZGX+a2zo1ZNLgNtSsVM7XYZlCwmOXFIhISxH5ze3npIg85sz7m4jsEJFtIvKy2zoTRCTamXeTp2IzpiQ6ez6V576M5Pa3f+FUUirvj+rCq3/uaAnBXMBjRwqqugPoCCAipYGDwGIR6Q0MBYJVNVlE6jrLtAGGA20Bf2CliLRQ1TRPxWhMSfFz9DHGLwrnwPFz3NO9CU8OaEkVPytgZy7mreGjvsBuVd0nItOBaaqaDKCqR5xlhgKfOe17RSQa6Aqs8VKMxhQ7iedSeOGrKOZtPEBg7UrMG92dbs1q+TosU4h5KykMBz51plsA14nIVCAJGKeqG4CGwFq3dWKdtguIyGhgNEBAQIAnYzamSFu+7TCTlkSQcOY8D9/QnMf6BeFX1kpUmNzleE5BREbm0F5WRD7Nbl4Oy5cDhgCfO01lgBpAd+AJYL64LnnI7rIHvahBdZaqhqhqSJ06VrLXmKyOnkpmzMebeeijTdSqXJ4lj/Zk/MBWlhBMvuR2pPB3ESmvqrMyGkSkErAE2H8J+xgIbFbVeOdxLLBIVRVYLyLpQG2nvbHbeo2AuEvYjzElmqqyaPNB/vllJOfOp/HETS0ZfX0zylqJCnMJcksK/YBvRMRPVd8QkTrAMuA7VR1/CfsYwR9DR+BKKn2AVSLSAigHHAPCgE9EZCauE81BwPpL2I8xJVbs72eZuDiCH3cepXOTGrx0RzBX1a3s67BMEZRjUlDV4yLSD/haRPxxnQh+W1XfyO/GRaQi0B94yK15DjBHRCKA88BI56hhm4jMByKBVGCMXXlkTO7S05X/rtvHS19vR4Fnh7Tlnu5NrESFuWziej/OZobI7c5kFWAm8B3wWcZ8VV3k8ejyEBISohs3bvR1GMb4xO6jpxm/MJwNMb9zfYs6vHBbOxrVqOjrsEwRICKbVDUku3m5DR/d4jYdlqVNAZ8nBWNKopS0dGat3sPr3+2iQtnSzBjWgTuubmglKkyByG346D5vBmKMyVvEwUSeXBBO5KGTDGxXn2eHtqVuFStgZwqO1T4ypghISknj9e92MWv1HmpWKsc7d1/NgHYNfB2WKYYsKRhTyG2IOU7ognD2HDvDn0IaMfHmNlSraCUqjGdYUjCmkDqdnMrL32znwzX7aFSjAv99oBvXBtX2dVimmMtXUhCRHkBT9+VV9UMPxWRMiffDjiNMXLSVQyeTuK9nU8bd2JJK5e0znPG8PF9lIvIR0Bz4Dci4b0ABSwrGFLDfz5znuS8jWfTrQa6qW5kFD/egc5Mavg7LlCD5+egRArTRnG5oMMZcMVVl2dbDPBMWwYmzKYztcxVj+lxF+TJWr8h4V36SQgRQHzjk4ViMKZHiTyYxaUkEKyLjad+wGh890I3WDar6OixTQuUnKdQGIkVkPZCc0aiqQzwWlTElgKoyf+MBnv8qivOp6UwY2IoHrg2kjBWwMz6Un6QwxdNBGFPS7E84y4TF4fwcnUC3wJpMuyOYwNqVfB2WMXknBVX90RuBGFMSpKUrc3+JYcbyHZQuJUy9rR0jugRYATtTaOSYFETkJ1W9VkROceGX3QigqmqDnsZcgp3xp3hyQTi/HThBn1Z1ef7WdvhXr+DrsIy5QG61j651flfxXjjGFD/nU9N558fdvPn9LiqXL8PrwzsypIO/FbAzhZLdDWOMB205cILQheFsP3yKIR38eeaWNtSqXN7XYRmTI0sKxnjAufNpvLpyJ+/9bw91q/jx3r0h9GtTz9dhGZMnSwrGFLA1uxOYsCicmISzjOgawISbW1HVzwrYmaIhv7WP6gNdcZ1w3qCqhz0alTFF0MmkFKZ9vZ1P1u2nSa2KfPKXbvRobgXsTNGSn9pHDwKTge9xXXn0poj8U1XneDo4Y4qK76Limbg4giOnkhh9fTMe79eCCuWsRIUpevJzpPAE0ElVEwBEpBbwC5BrUhCRlsA8t6ZmwGRVfc2ZPw6YDtRR1WNO2wTgAVyF98aq6vJL+muM8bKE08k8+0UkYVviaFmvCu/c05mOjav7OixjLlt+kkIscMrt8SngQF4rqeoOoCOAiJQGDgKLnceNgf7A/ozlRaQNMBxoC/gDK0WkhaqmYUwho6qEbYnj2S8iOZWUwuP9WvBIr+aUK2MlKkzRlp+kcBBYJyJLcZ1TGAqsF5F/AKjqzHxsoy+wW1X3OY9fBZ4ElrotMxT4TFWTgb0iEo3rPMaafP0lxnjJocRzTFoSwcqoI3RoXJ2X7wimZX27nccUD/lJCrudnwwZb+SX8l8wHPgUQESGAAdVdUuWm3caAmvdHsc6bRcQkdHAaICAgIBLCMGYK5Oerny24QAvLosiJT2dpwe15r6egZS2EhWmGMlP7aNnr2QHIlIOGAJMEJGKwETgxuwWzW732cQzC5gFEBISYt/xYLwi5tgZxi8KZ+2e4/RoXotptwcTUKuir8MypsDl5+qjEFxv5E248Os4g/O5j4HAZlWNF5H2QCCQcZTQCNgsIl1xHRk0dluvERCXz30Y4xGpaem8/3MMr3y7g7KlSjHt9vb8uUtjK1Fhiq38DB99jOsKpK1A+mXsYwTO0JGqbgXqZswQkRggRFWPiUgY8ImIzMR1ojkIWH8Z+zOmQGw/fJLQBeFsiU2kX+t6PH9rO+pX8/N1WMZ4VH6SwlFVDbucjTvDRf2Bh/JaVlW3ich8IBJIBcbYlUfGF5JT0/j3D7t564doqlUoy5sjOjE4uIEdHZgSIT9J4RkReQ/4jgu/eW1RXiuq6lmgVi7zm2Z5PBWYmo+YjPGIX/f/TujCcHbGn+a2Tg2ZNLgNNSuV83VYxnhNfpLCfUAroCx/DB8pkGdSMKaoOHs+lVdW7GTOz3upX9WPOaNC6NPKCtiZkic/SaGDqrb3eCTG+Mgv0ccYv2gr+4+f5e7uAYQOaEUVK2BnSqj8JIW1ItJGVSM9Ho0xXpR4LoUXl0Xx2YYDNK1Vkc9Gd6d7sxxHO40pEfKTFK4FRorIXlznFDK+jjO/l6QaU+h8GxnP00u2cvRUMg/d4Cpg51fWCtgZk5+kMMDjURjjJcdOJzMlbBtfhh+iVf0qzL43hOBG1X0dljGFRn7uaN4nItcCQar6vojUASp7PjRjCo6qsvS3OJ79YhtnktP4f/1b8NANVsDOmKzyc0fzM0AI0BJ4H9dVSP8Feno2NGMKRtyJczy9JILvtx+hU4CrgF1QPStgZ0x28jN8dBvQCdgMoKpxImL/UabQS09XPt2wnxeXbSctXZk8uA0jezS1AnbG5CI/SeG8qqqIKICIVPJwTMZcsb3HzjB+YTjr9h6n51W1ePE2K2BnTH7kJynMF5F3geoi8hfgfuA9z4ZlzOVJTUtnzs97eWXFTsqVKcXLdwQzLKSRlagwJp/yc6J5hoj0B07iOq8wWVW/9XhkxlyiqEMnCV0YTnhsIv3buArY1atqBeyMuRT5OdH8kqqGAt9m02aMz2UtYPev/+vEoPZWwM6Yy5Gf4aP+QNYEMDCbNmO8LmsBu8mD21DDCtgZc9lyTAoi8gjwKNBMRMLdZlUBfvZ0YMbkJmsBu/dHdaF3q7p5r2iMyVVuRwqfAF8DLwLj3dpPqepxj0ZlTC6sgJ0xnpNjUlDVRCAR1zenGeNzVsDOGM/LzzkFY3zOCtgZ4x2WFEyhlnA6mSlfRPLFljgrYGeMF1hSMIWSqhK2JY4pYVbAzhhv8lhSEJGWwDy3pmbAZKAhcAtwHtgN3KeqJ5x1JgAPAGnAWFVd7qn4TOHlXsCuY+PqTL/TCtgZ4y0eSwqqugPoCCAipYGDwGJcd0VPUNVUEXkJmACEikgbYDjQFvAHVopIC1VN81SMpnDJWsBu0uA2jLICdsZ4lbeGj/oCu1V1H7DPrX0tcKczPRT4TFWTgb0iEg10BdZ4KUbjQzHHzhBqBeyM8TlvJYXhwKfZtN/PH0NMDXEliQyxTtsFRGQ0MBogICCgYKM0Xpe1gN1Ld7TnTyGNrUSFMT7i8aQgIuWAIbiGidzbJwKpwMcZTdmsrhc1qM4CZgGEhIRcNN8UHdsPnyR0QThbrICdMYWGN44UBgKbVTU+o0FERgKDgb6qmvHGHgs0dluvERDnhfiMl2UtYPfmiE4MDrYCdsYUBt5ICiNwGzoSkQG4iundoKpn3ZYLAz4RkZm4TjQHAeu9EJ/xIvcCdrd29GfyLW2paQXsjCk0PJoURKQiriqrD7k1/wsoD3zrfDJcq6oPq+o2EZkPROIaVhpjVx4VH+fOp/HKih3M+Xkv9ar6MWdUCH1a1fN1WMaYLDyaFJwjgVpZ2q7KZfmpwFRPxmS875fdxxi/0FXA7q5uAYwfaAXsjCms7I5m4zEnk1J4cdl2Pl2/3wrYGVNEWFIwHvFdVDwTF0dw5FQSo693FbCrUM4K2BlT2FlSMAUq4XQy//wykqW/uQrYvXtPZzo0ru7rsIwx+WRJwRQIVeWL8ENMCdvGqaQUHu/Xgkd6WQE7Y4oaSwrmih1OTOLpJRGsjIqnQ+PqvHxHMC3rWwE7Y4oiSwrmsqkq8zYcYOqyKFLS0nl6UGvu6xloBeyMKcIsKZjLsj/hLOMXhfPL7gSuaVaLaXe0p0mtSr4OyxhzhSwpmEuSlq7M/SWGGct3UKaU8OLt7RnexQrYGVNcWFIw+bYr/hRPLgzn1/0n6NuqLs/f1o4G1Sr4OixjTAGypGDylJKWzturdvOv76Op7FeG14d3ZEgHfzs6MKYYsqRgcrU1NpEnFmxh++FT3NLBnym3tKFW5fK+DssY4yGWFEy2klLSeHXlTmav3kOdKuWZfW8I/dtYATtjijtLCuYi6/ceJ3RhOHuPnWF4l8ZMuLk11SpYATtjSgJLCibT6eRUXvp6Ox+t3UfjmhX4+MFu9Lyqtq/DMsZ4kSUFA8CqHUd4atFWDp1M4v6egYy7qQUVy9nLw5iSxv7rS7gTZ8/zzy8jWbT5IFfVrczCR3pwdUANX4dljPERSwol2LKth5i8NIITZ1P4W5+r+GufqyhfxspbG1OSWVIogY6cSmLykm18s+0w7RpW5cP7u9HGv6qvwzLGFAKWFEoQVWXBplie+zKSpNR0Qge04i/XBVKmtJW3Nsa4eCwpiEhLYJ5bUzNgMvCh094UiAH+pKq/O+tMAB4A0oCxqrrcU/GVNLG/n+WpxRGs3nmULk1r8NIdwTSrU9nXYRljChmPJQVV3QF0BBCR0sBBYDEwHvhOVaeJyHjncaiItAGGA20Bf2CliLRQ1TRPxVgSpKcrH63dx0vfbAfgn0Pbcne3JpSy8tbGmGx4a/ioL7BbVfeJyFCgl9P+AbAKCAWGAp+pajKwV0Siga7AGi/FWOzsPnqa8QvD2RDzO9cF1ebF29vTqEZFX4dljCnEvJUUhgOfOtP1VPUQgKoeEpG6TntDYK3bOrFO2wVEZDQwGiAgIMBjARdlqWnpzP7fXl5duRO/MqWYfmcwd3ZuZAXsjDF58nhSEJFywBBgQl6LZtOmFzWozgJmAYSEhFw0v6SLjDvJkwu3EHHwJAPa1ueft7albhU/X4dljCkivHGkMBDYrKrxzuN4EWngHCU0AI447bFAY7f1GgFxXoivWEhOTeNf30fz9qrdVK9Ylrfuupqb2zfwdVjGmCLGG0lhBH8MHQGEASOBac7vpW7tn4jITFwnmoOA9V6Ir8jbvP93nlwQTvSR09x+dUMmDWpDjUrlfB2WMaYI8mhSEJGKQH/gIbfmacB8EXkA2A8MA1DVbSIyH4gEUoExduVR7s6eT2XG8p28/8teGlT14/37utC7Zd28VzTGmBx4NCmo6lmgVpa2BFxXI2W3/FRgqidjKi5+iT7G+EVb2X/8LHd3DyB0QCuq+Fl5a2PMlbE7mouYk0kpvPBVFJ9tOEDTWhWZN7o73ZrVyntFY4zJB0sKRcjKyHgmLtnK0VPJPHR9Mx7r14IK5ayAnTGm4FhSKAISTifz7BeRhG2Jo1X9Ksy6J4QOjav7OixjTDFkSaEQU1W+CD/ElLBtnEpK4bF+QTza6yrKlbECdsYYz7CkUEgdTkzi6SURrIyKp0Ojarx8Z3da1q/i67CMMcWcJYVCRlWZt+EAU5dFcT41nYk3t+b+awMpbQXsjDFeYEmhENmfcJYJi8P5OTqBboE1eemOYJrWruTrsIwxJYglhUIgLV2Z+0sMM5bvoHQpYept7RjRJcDKWxtjvM6Sgo9FHznFkwvC2bz/BL1b1mHqbe3xr17B12EZY0ooSwo+kpKWzrs/7uaN76KpWL40r/65A7d2bGjlrY0xPmVJwQciDiby5IJwIg+dZFD7BkwZ0pY6Vcr7OixjjLGk4E1JKWm88d0u3l29h5qVyvHO3Z0Z0K6+r8MyxphMlhS8ZNO+4zy5IJzdR89wZ+dGTBrUhmoVrYCdMaZwsaTgYWeSU5m+fAcfrInBv1oFPri/Kze0qOPrsIwxJluWFDzop13HGL8onNjfz3HvNU14ckArKpe3LjfGFF72DuUBiedSmPpVJPM3xhJYuxLzH7qGroE1fR2WMcbkyZJCAVux7TBPL4kg4cx5Hr6hOY/1C8KvrJW3NsYUDZYUCkjC6WSeCdvGl+GHaFW/Cv8Z2YX2jar5OixjjLkklhSukKoStiWOKWHbOJ2cyj/6t+DhG5pbeWtjTJHk0aQgItWB94B2gAL3A+eAdwA/IBV4VFXXO8tPAB4A0oCxqrrck/FdqcOJSUxcvJXvth+hQ+PqTL8zmBb1rLy1Mabo8vSRwuvAN6p6p4iUAyoC84FnVfVrEbkZeBnoJSJtgOFAW8AfWCkiLVQ1zcMxXjJV5bMNB3jhqyhS0tN5elBr7utp5a2NMUWfx5KCiFQFrgdGAajqeeC8iChQ1VmsGhDnTA8FPlPVZGCviEQDXYE1norxcuxPOMv4ReH8sjuB7s1qMu12K29tjCk+PHmk0Aw4CrwvIh2ATcDfgceA5SIyAygF9HCWbwisdVs/1mm7gIiMBkYDBAQEeCr2i1h5a2NMSeDJpFAGuBr4m6quE5HXgfG4jg4eV9WFIvIn4D9APyC7d1e9qEF1FjALICQk5KL5nhB95BRPLAjnVytvbYwp5jyZFGKBWFVd5zxegCspXIvriAHgc1wnojOWb+y2fiP+GFryiazlrV/7c0eGdvS38tbGmGLLY0lBVQ+LyAERaamqO4C+QCSuYaUbgFVAH2CXs0oY8ImIzMR1ojkIWO+p+PJyQXnr4AY8O6QttStbeWtjTPHm6auP/gZ87Fx5tAe4D1gKvC4iZYAknPMDqrpNRObjShypwBhfXHmUtbz1u/d05qa2Vt7aGFMyiKpXhuU9IiQkRDdu3Fhg23Mvbz2scyOetvLWxphiSEQ2qWpIdvPsjmYuLm/94f1dud7KWxtjSqASnxSsvLUxxvyhxL77JZ5L4YWvopi38YCVtzbGGEeJTArhsSf4y4cbOXoq2cpbG2OMmxKZFAJqVqRFvSrMvjeE4EbVfR2OMcYUGiUyKVSvWI6PHujm6zCMMabQsaL/xhhjMllSMMYYk8mSgjHGmEyWFIwxxmSypGCMMSaTJQVjjDGZLCkYY4zJZEnBGGNMpiJdOltEjgL7fB1HLmoDx3wdRC4svitj8V0Zi+/KXEl8TVQ121LQRTopFHYisjGnmuWFgcV3ZSy+K2PxXRlPxWfDR8YYYzJZUjDGGJPJkoJnzfJ1AHmw+K6MxXdlLL4r45H47JyCMcaYTHakYIwxJpMlBWOMMZksKRQAEWksIj+ISJSIbBORvzvtU0TkoIj85vzc7MMYY0RkqxPHRqetpoh8KyK7nN81fBRbS7c++k1ETorIY77sPxGZIyJHRCTCrS3H/hKRCSISLSI7ROQmH8U3XUS2i0i4iCwWkepOe1MROefWj+/4KL4cn89C0n/z3GKLEZHfnHZf9F9O7ymefw2qqv1c4Q/QALjama4C7ATaAFOAcb6Oz4krBqidpe1lYLwzPR54qRDEWRo4DDTxZf8B1wNXAxF59ZfzXG8BygOBwG6gtA/iuxEo40y/5BZfU/flfNh/2T6fhaX/ssx/BZjsw/7L6T3F469BO1IoAKp6SFU3O9OngCigoW+jypehwAfO9AfArb4LJVNfYLeq+vROdVVdDRzP0pxTfw0FPlPVZFXdC0QDXb0dn6quUNVU5+FaoJEnY8hNDv2Xk0LRfxlERIA/AZ96Mobc5PKe4vHXoCWFAiYiTYFOwDqn6a/O4fwcXw3POBRYISKbRGS001ZPVQ+B60UI1PVZdH8YzoX/jIWl/yDn/moIHHBbLhbffyi4H/ja7XGgiPwqIj+KyHW+Corsn8/C1n/XAfGqusutzWf9l+U9xeOvQUsKBUhEKgMLgcdU9STwNtAc6AgcwnVI6is9VfVqYCAwRkSu92Es2RKRcsAQ4HOnqTD1X24kmzafXestIhOBVOBjp+kQEKCqnYB/AJ+ISFUfhJbT81mo+g8YwYUfTHzWf9m8p+S4aDZtl9WHlhQKiIiUxfXkfayqiwBUNV5V01Q1HZiNhw+Jc6Oqcc7vI8BiJ5Z4EWkA4Pw+4qv4HAOBzaoaD4Wr/xw59Vcs0NhtuUZAnJdjA0BERgKDgbvUGWx2hhQSnOlNuMabW3g7tlyez8LUf2WA24F5GW2+6r/s3lPwwmvQkkIBcMYg/wNEqepMt/YGbovdBkRkXdcbRKSSiFTJmMZ1QjICCANGOouNBJb6Ij43F3xCKyz95yan/goDhotIeREJBIKA9d4OTkQGAKHAEFU969ZeR0RKO9PNnPj2+CC+nJ7PQtF/jn7AdlWNzWjwRf/l9J6CN16D3jyjXlx/gGtxHaqFA785PzcDHwFbnfYwoIGP4muG68qELcA2YKLTXgv4Dtjl/K7pwz6sCCQA1dzafNZ/uJLTISAF16ewB3LrL2Airk+QO4CBPoovGte4csZr8B1n2Tuc530LsBm4xUfx5fh8Fob+c9rnAg9nWdYX/ZfTe4rHX4NW5sIYY0wmGz4yxhiTyZKCMcaYTJYUjDHGZLKkYIwxJpMlBWOMMZksKRivcCpNFsh9BiLSS0R65HPZGBGpnccyo0TEv4BiqyMiP4lIhIjc6ta+NKd9iMjDInJvQezf2wqy70zhYEnBFEW9gHwlhXwaBRTUG9sIXIXKrgGeABCRW3DdqZ3tHaaq+o6qfnilO864wcrLRlFwfWcKAUsKxptKi8hspz78ChGpACAizUXkG6dY3/9EpJXTfouIrHMKka0UkXpOcbCHgced2vYXFCcTkVrOtn8VkXdxasJkPVIRkXHiqu9/JxACfOxsb5CILHZbrr+ILCL/UoAKuEoYpztlEx4Dpue0ghPHOGd6lYi8JCLrRWRnxt8nIqVFZIa4vhMjXET+5rTHiMhkEfkJGCYiN4rIGhHZLCKfO7VzMpZ7wZm3UUSuFpHlIrJbRB52i+UJEdng7ONZt76LyvrcZdN3FS6hn0xh5ek78+zHflQza9KnAh2dx/OBu53p74AgZ7ob8L0zXYM/vkf8QeAVZ3oKOXzPAvAGf9TBH4TrrtDaZKmJD4wDpjjTq4AQZ1qA7UAd5/EnXMIdrEA14CtgI64y4GOBkXmsk/n3OLFk/J03Ayud6Udw1cHJ+L6Ems7vGOBJZ7o2sBqo5DwOdeuLGOARZ/pVXHfKVgHqAEec9htxfRm84PrA+CWu7x3I7bnL7Dv7KR4/ZbLJE8Z4yl5V/c2Z3gQ0dT7J9gA+d5V7AVyfssFV1GueUzOnHLA3H/u4HldBM1T1KxH5/VICVFUVkY+Au0XkfVzDQPke71fVRFzJCHGVhg4FbheR2biS3CuquiaPzWQcmWzC9YYMrpo876jzfQmq6v5dABnF27rj+rKVn52+LAe47yvM+b0VqKyuOv2nRCRJXN/SdqPz86uzXGVcNXT2k81zl8ffYIooSwrGm5LdptNwDbOUAk6oasdsln8TmKmqYSLSC9cn6vzIrnZLKhcOl/rlsv77wBdAEvC5/vHFNQCISDfgXefhZFUNI3uTgam4zjNswnXUsRTonUf8Gf2Uxh//o0LOpZDPuC3zraqOyGO76Vz4XKQ7+xHgRVV9130lZ8guu+fOFEN2TsH4lLpqxO8VkWHgqg4pIh2c2dWAg870SLfVTuEa+sjOauAuZ1sDcX06B4gH6jrnHMrjKi+d7fbUdUI4DngaV4G0rDGvU9WOzk+2CUFEggB/Vf0RV7G/dFxv6rklo9ysAB52zlEgIjWzWWYt0FNErnKWqSgil1LieTlwv9t5iIYiktcXL+X2XJgiyJKCKQzuAh4QkYwqrkOd9im4hpX+BxxzW/4L4LbsTjQDzwLXi8hmXEMh+wFUNQX4J65vr/oS13mDDHOBd7KcLP0YOKCqkZf5N03FlVTAVZFzFK437RmXub33cP0t4U4//V/WBVT1qLOfT0Uk3Nlfq/zuQFVX4DqaWSMiW4EF5P2GP5eL+84UYVYl1ZhsiMi/gF9V9T++jsUYb7KkYEwWIrIJ1zh9f1VNzmt5Y4oTSwrGGGMy2TkFY4wxmSwpGGOMyWRJwRhjTCZLCsYYYzJZUjDGGJPp/wOc8xsMOIWo5gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] diff --git a/idaes_examples/archive/power_gen/supercritical/supercritical_power_plant_src.ipynb b/idaes_examples/archive/power_gen/supercritical/supercritical_power_plant_src.ipynb index ad4caf5d..338f6dbd 100644 --- a/idaes_examples/archive/power_gen/supercritical/supercritical_power_plant_src.ipynb +++ b/idaes_examples/archive/power_gen/supercritical/supercritical_power_plant_src.ipynb @@ -3257,14 +3257,14 @@ "2022-09-16 12:08:39 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.area\n", "2022-09-16 12:08:39 [INFO] idaes.init.Steam Cycle Model: Starting initialization\n", "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n", - "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve intialization started\n", - "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve intialization complete\n", - "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve intialization started\n", - "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve intialization complete\n", - "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve intialization started\n", - "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve intialization complete\n", - "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve intialization started\n", - "2022-09-16 12:08:40 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve intialization complete\n", + "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n", + "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n", + "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n", + "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n", + "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n", + "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n", + "2022-09-16 12:08:39 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n", + "2022-09-16 12:08:40 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n", "2022-09-16 12:08:40 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:08:40 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:08:40 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n", @@ -3280,14 +3280,14 @@ "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n", "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n", - "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve intialization started\n", - "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve intialization complete\n", - "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve intialization started\n", - "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve intialization complete\n", - "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve intialization started\n", - "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve intialization complete\n", - "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve intialization started\n", - "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve intialization complete\n", + "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n", + "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n", + "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n", + "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n", + "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n", + "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n", + "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n", + "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n", "2022-09-16 12:08:42 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:08:43 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:08:43 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n", diff --git a/idaes_examples/archive/power_gen/supercritical/supercritical_steam_cycle_src.ipynb b/idaes_examples/archive/power_gen/supercritical/supercritical_steam_cycle_src.ipynb index 24aed502..d8d5db80 100644 --- a/idaes_examples/archive/power_gen/supercritical/supercritical_steam_cycle_src.ipynb +++ b/idaes_examples/archive/power_gen/supercritical/supercritical_steam_cycle_src.ipynb @@ -1150,14 +1150,14 @@ "2022-09-16 12:10:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.area\n", "2022-09-16 12:10:56 [INFO] idaes.init.Steam Cycle Model: Starting initialization\n", "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n", - "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve intialization started\n", - "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve intialization complete\n", - "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve intialization started\n", - "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve intialization complete\n", - "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve intialization started\n", - "2022-09-16 12:10:57 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve intialization complete\n", - "2022-09-16 12:10:57 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve intialization started\n", - "2022-09-16 12:10:57 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve intialization complete\n", + "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n", + "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n", + "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n", + "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n", + "2022-09-16 12:10:56 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n", + "2022-09-16 12:10:57 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n", + "2022-09-16 12:10:57 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n", + "2022-09-16 12:10:57 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n", "2022-09-16 12:10:57 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:10:57 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:10:57 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n", @@ -1173,14 +1173,14 @@ "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n", "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n", - "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve intialization started\n", - "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve intialization complete\n", - "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve intialization started\n", - "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve intialization complete\n", - "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve intialization started\n", - "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve intialization complete\n", - "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve intialization started\n", - "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve intialization complete\n", + "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n", + "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n", + "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n", + "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n", + "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n", + "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n", + "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n", + "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n", "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:10:59 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n", "2022-09-16 12:11:00 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n", diff --git a/idaes_examples/mod/co2_adsorption_desorption/NETL_32D_gas_phase_thermo.py b/idaes_examples/mod/co2_adsorption_desorption/NETL_32D_gas_phase_thermo.py index 9f273146..37a6de39 100644 --- a/idaes_examples/mod/co2_adsorption_desorption/NETL_32D_gas_phase_thermo.py +++ b/idaes_examples/mod/co2_adsorption_desorption/NETL_32D_gas_phase_thermo.py @@ -442,13 +442,13 @@ def initialize( hold_state : flag indicating whether the initialization routine should unfix any state variables fixed during initialization (default=False). - - True - states varaibles are not unfixed, and + - True - states variables are not unfixed, and a dict of returned containing flags for which states were fixed during initialization. - False - state variables are unfixed after initialization by calling the - relase_state method + release_state method Returns: If hold_states is True, returns a dict containing flags for which states were fixed during initialization. @@ -563,7 +563,7 @@ def initialize( def release_state(blk, flags, outlvl=0): """ - Method to relase state variables fixed during initialization. + Method to release state variables fixed during initialization. Keyword Arguments: flags : dict containing information of which state variables were fixed during initialization, and should now be diff --git a/idaes_examples/mod/co2_adsorption_desorption/NETL_32D_solid_phase_thermo.py b/idaes_examples/mod/co2_adsorption_desorption/NETL_32D_solid_phase_thermo.py index c6901f56..7161648b 100644 --- a/idaes_examples/mod/co2_adsorption_desorption/NETL_32D_solid_phase_thermo.py +++ b/idaes_examples/mod/co2_adsorption_desorption/NETL_32D_solid_phase_thermo.py @@ -104,7 +104,7 @@ def build(self): ) # TODO - actual molecular weights of the materials can be substituted here - # but are not necessary for peformance calculations + # but are not necessary for performance calculations mw_comp_dict = { "H2O_s": 0.018, # MW of H2O(g) is used for H2O(s) "Car": 0.044, # MW of CO2(g) is used for carbamate @@ -275,7 +275,7 @@ def initialize( initialization. - False - state variables are unfixed after initialization by calling the - relase_state method + release_state method Returns: If hold_states is True, returns a dict containing flags for which states were fixed during initialization. @@ -342,7 +342,7 @@ def initialize( def release_state(blk, flags, outlvl=idaeslog.NOTSET): """ - Method to relase state variables fixed during initialization. + Method to release state variables fixed during initialization. Keyword Arguments: flags : dict containing information of which state variables were fixed during initialization, and should now be diff --git a/idaes_examples/mod/dae/petsc/pid_steam_tank.py b/idaes_examples/mod/dae/petsc/pid_steam_tank.py index 70a65643..f93b54d6 100644 --- a/idaes_examples/mod/dae/petsc/pid_steam_tank.py +++ b/idaes_examples/mod/dae/petsc/pid_steam_tank.py @@ -47,7 +47,7 @@ def _valve_pressure_flow_cb(b): b.Cv = pyo.Var( initialize=0.1, - doc="Valve flow coefficent", + doc="Valve flow coefficient", units=umeta("amount") / umeta("time") / umeta("pressure"), ) b.Cv.fix() @@ -75,7 +75,7 @@ def create_model( """Create a test model and solver Args: - time_set (list): The begining and end point of the time domain + time_set (list): The beginning and end point of the time domain time_units (Pyomo Unit object): Units of time domain nfe (int): Number of finite elements argument for the DAE transformation. diff --git a/idaes_examples/mod/hda/hda_ideal_VLE.py b/idaes_examples/mod/hda/hda_ideal_VLE.py index cd1581e8..9498ec7c 100644 --- a/idaes_examples/mod/hda/hda_ideal_VLE.py +++ b/idaes_examples/mod/hda/hda_ideal_VLE.py @@ -433,7 +433,7 @@ def initialize(blk, state_args={}, state_vars_fixed=False, state_args : Dictionary with initial guesses for the state vars chosen. Note that if this method is triggered through the control volume, and if initial guesses - were not provied at the unit model level, the + were not provided at the unit model level, the control volume passes the inlet values as initial guess.The keys for the state_args dictionary are: @@ -444,7 +444,7 @@ def initialize(blk, state_args={}, state_vars_fixed=False, outlvl : sets output level of initialization routine * 0 = no output (default) * 1 = return solver state for each step in routine - * 2 = include solver output infomation (tee=True) + * 2 = include solver output information (tee=True) optarg : solver options dictionary object (default=None) state_vars_fixed: Flag to denote if state vars have already been fixed. @@ -455,18 +455,18 @@ def initialize(blk, state_args={}, state_vars_fixed=False, with 0D blocks. - False - states have not been fixed. The state block will deal with fixing/unfixing. - solver : str indicating whcih solver to use during + solver : str indicating which solver to use during initialization (default = 'ipopt') hold_state : flag indicating whether the initialization routine should unfix any state variables fixed during initialization (default=False). - - True - states varaibles are not unfixed, and + - True - states variables are not unfixed, and a dict of returned containing flags for which states were fixed during initialization. - False - state variables are unfixed after initialization by calling the - relase_state method + release_state method Returns: If hold_states is True, returns a dict containing flags for which states were fixed during initialization. @@ -554,7 +554,7 @@ def initialize(blk, state_args={}, state_vars_fixed=False, def release_state(blk, flags, outlvl=0): ''' - Method to relase state variables fixed during initialization. + Method to release state variables fixed during initialization. Keyword Arguments: flags : dict containing information of which state variables were fixed during initialization, and should now be @@ -712,7 +712,7 @@ def rule_energy_internal_mol_phase_comp(b, p, j): return b.energy_internal_mol_phase_comp[p, j] == \ b.enth_mol_phase_comp[p, j] - \ const.gas_constant*(b.temperature - - b._params.temeprature_ref) + b._params.temperature_ref) else: return b.energy_internal_mol_phase_comp[p, j] == \ b.enth_mol_phase_comp[p, j] diff --git a/idaes_examples/mod/methanol/methanol_param_VLE.py b/idaes_examples/mod/methanol/methanol_param_VLE.py index 1ee5128a..041eb6e1 100644 --- a/idaes_examples/mod/methanol/methanol_param_VLE.py +++ b/idaes_examples/mod/methanol/methanol_param_VLE.py @@ -11,7 +11,7 @@ # at the URL "https://github.com/IDAES/idaes-pse". ############################################################################## """ -Example property package for the VLE calucations for the methanol synthesis +Example property package for the VLE calculations for the methanol synthesis problem from Turkay & Grossmann. The parameters and correlations are from the paper. """ @@ -37,7 +37,7 @@ from .methanol_state_block_VLE import IdealStateBlock -# Some more inforation about this module +# Some more information about this module __author__ = "Jaffer Ghouse", "Brandon Paul" __version__ = "0.0.1" diff --git a/idaes_examples/mod/methanol/methanol_state_block_VLE.py b/idaes_examples/mod/methanol/methanol_state_block_VLE.py index d518221e..ce803ef2 100644 --- a/idaes_examples/mod/methanol/methanol_state_block_VLE.py +++ b/idaes_examples/mod/methanol/methanol_state_block_VLE.py @@ -40,7 +40,7 @@ solve_indexed_blocks) from idaes.core.util.exceptions import ConfigurationError -# Some more inforation about this module +# Some more information about this module __author__ = "Jaffer Ghouse", "Brandon Paul" __version__ = "0.0.1" @@ -65,7 +65,7 @@ def initialize(blk, state_args=None, state_args : Dictionary with initial guesses for the state vars chosen. Note that if this method is triggered through the control volume, and if initial guesses - were not provied at the unit model level, the + were not provided at the unit model level, the control volume passes the inlet values as initial guess.The keys for the state_args dictionary are: @@ -79,7 +79,7 @@ def initialize(blk, state_args=None, * 0 = no output (default) * 1 = return solver state for each step in routine - * 2 = include solver output infomation (tee=True) + * 2 = include solver output information (tee=True) optarg : solver options dictionary object (default=None) solver : str indicating which solver to use during @@ -190,7 +190,7 @@ def initialize(blk, state_args=None, def release_state(blk, flags, outlvl=0): ''' - Method to relase state variables fixed during initialization. + Method to release state variables fixed during initialization. Keyword Arguments: flags : dict containing information of which state variables diff --git a/idaes_examples/mod/power_gen/SOFC_ROM.py b/idaes_examples/mod/power_gen/SOFC_ROM.py index 5bb651c8..3c271de3 100644 --- a/idaes_examples/mod/power_gen/SOFC_ROM.py +++ b/idaes_examples/mod/power_gen/SOFC_ROM.py @@ -58,7 +58,7 @@ def build_SOFC_ROM(m): n_outputs = 48 n_samples = 13424 - # create indecies for vars and params + # create indices for vars and params input_index = list(range(n_inputs)) input_plus_index = list(range(n_inputs + 1)) output_index = list(range(n_outputs)) diff --git a/idaes_examples/mod/power_gen/gas_turbine.py b/idaes_examples/mod/power_gen/gas_turbine.py index df43452b..c0852bbc 100644 --- a/idaes_examples/mod/power_gen/gas_turbine.py +++ b/idaes_examples/mod/power_gen/gas_turbine.py @@ -85,11 +85,11 @@ def _add_properties( self.cmb_species = cmb_species self.flue_species = flue_species self.rxns = rxns - # Here three differnt type of property blocks are used, so that we can + # Here three different type of property blocks are used, so that we can # avoid components with zero flow, which can cause problems with # certain property calculations (entropy for example). Three types of # gas streams are Air, combstion mixture, and flue gas. Fortunately - # natural gas has some air compoents in it so the combustion property + # natural gas has some air components in it so the combustion property # parameters can be used for natural gas and natural gas mixed with air. self.prop_water = iapws95.Iapws95ParameterBlock() self.air_prop_params = GenericParameterBlock( @@ -122,7 +122,7 @@ def _add_models(self): property_package=self.flue_prop_params, ) self.vsv = um.Valve( - doc="Valve to approximatly variable inlet guide vanes", + doc="Valve to approximately variable inlet guide vanes", valve_function_callback=um.ValveFunctionType.linear, property_package=self.air_prop_params, ) @@ -323,7 +323,7 @@ def head_isen_eqn(b, t): ) def _add_constraints(self): - """Add addtional flowsheet constraints and expressions""" + """Add additional flowsheet constraints and expressions""" self.cmbout_o2_mol_frac = pyo.Var( self.time, initialize=0.1157, doc="Combustor outlet O2 mole fraction." ) @@ -373,7 +373,7 @@ def gt_power_expr(b, t): + self.gts3.control_volume.work[t] ) - # Add a varable and constraint for gross power. This allows fixing power + # Add a variable and constraint for gross power. This allows fixing power # for simulations where a specific power output is desired. self.gt_power = pyo.Var(self.time, units=pyo.units.W) @@ -919,7 +919,7 @@ def initialize( propagate_state(self.g02b) self.gts1.ratioP[0] = 0.7 self.gts1.initialize(outlvl=outlvl, solver=solver, optarg=optarg) - # blade cooling air valve01, and calculate a flow coefficent + # blade cooling air valve01, and calculate a flow coefficient propagate_state(self.air05) self.valve01.Cv = 2 self.valve01.Cv.unfix() @@ -942,7 +942,7 @@ def initialize( propagate_state(self.g04) self.gts2.ratioP[0] = 0.7 self.gts2.initialize(outlvl=outlvl, solver=solver, optarg=optarg) - # blade cooling air valve02, and calculate a flow coefficent + # blade cooling air valve02, and calculate a flow coefficient propagate_state(self.air07) self.valve02.Cv = 2 self.valve02.Cv.unfix() @@ -965,7 +965,7 @@ def initialize( propagate_state(self.g06) self.gts3.ratioP[0] = 0.7 self.gts3.initialize(outlvl=outlvl, solver=solver, optarg=optarg) - # blade cooling air valve03, and calculate a flow coefficent + # blade cooling air valve03, and calculate a flow coefficient propagate_state(self.air09) self.valve03.Cv = 2 self.valve03.Cv.unfix() @@ -997,17 +997,17 @@ def initialize( self.valve01.control_volume.properties_in[0].flow_mol.unfix() self.valve02.control_volume.properties_in[0].flow_mol.unfix() self.valve03.control_volume.properties_in[0].flow_mol.unfix() - # deltaP will be whatever is needed to satisfy the power requirment + # deltaP will be whatever is needed to satisfy the power requirement self.vsv.deltaP.unfix() # The compressor efficiency is a little high since it doesn't include # throttling in the valve use to approximate VSV. self.cmp1.efficiency_isentropic.fix(0.92) self.cmp1.ratioP.fix(17.5) # lowering this ratio, just means less pressure - # drop in the VSV valve, decresing throttle loss + # drop in the VSV valve, decreasing throttle loss # Exhaust pressure will be a bit over ATM due to HRSG. This will come from # HRSG model when coupled to form NGCC model self.exhaust_1.pressure.fix(1.1e5) - # Don't know how much blade cooling air is needed for off desing case, but + # Don't know how much blade cooling air is needed for off design case, but # full load flows were based on WVU model. For now just leave valves at # fixed opening. self.valve01.valve_opening.fix() diff --git a/idaes_examples/mod/power_gen/hrsg.py b/idaes_examples/mod/power_gen/hrsg.py index 8c0a3a93..2e0a0a7b 100644 --- a/idaes_examples/mod/power_gen/hrsg.py +++ b/idaes_examples/mod/power_gen/hrsg.py @@ -89,7 +89,7 @@ def _add_properties(self): def _add_unit_models(self): """Add process unit models""" - # short refernce to property parameter blocks + # short reference to property parameter blocks prop_water = self.prop_water prop_gas = self.prop_gas @@ -117,7 +117,7 @@ def _add_unit_models(self): inlet_list=["econ_lp", "Preheater"], ) self.drum_lp = HelmPhaseSeparator( - doc="Phase seperator for LP evaporator (parital evaporator)", + doc="Phase separator for LP evaporator (partial evaporator)", property_package=prop_water, ) self.evap_lp = HeatExchanger( diff --git a/idaes_examples/mod/power_gen/ngcc.py b/idaes_examples/mod/power_gen/ngcc.py index dc3b9912..49dfff98 100644 --- a/idaes_examples/mod/power_gen/ngcc.py +++ b/idaes_examples/mod/power_gen/ngcc.py @@ -221,7 +221,7 @@ def _add_constraints(self): self.cap_specific_reboiler_duty = pyo.Var( initialize=2.7e6, units=pyo.units.J / pyo.units.kg ) - self.cap_addtional_co2 = pyo.Var( + self.cap_additional_co2 = pyo.Var( self.config.time, initialize=0.0, units=pyo.units.kg / pyo.units.s ) self.cap_specific_compression_power = pyo.Var( @@ -349,7 +349,7 @@ def reboiler_duty_expr(b, t): # scale to flue gas flow * 0.04401 * pyo.units.kg / pyo.units.mol - + b.cap_addtional_co2[t] + + b.cap_additional_co2[t] ) + b.cap_additional_reboiler_duty[t] ) @@ -431,7 +431,7 @@ def initialize( # here suffix=False avoids loading scaling factors iutil.from_json(self, fname=load_from, wts=iutil.StoreSpec(suffix=False)) else: - self.cap_addtional_co2.fix() + self.cap_additional_co2.fix() self.cap_fraction.fix() self.cap_specific_reboiler_duty.fix() self.cap_specific_compression_power.fix() @@ -496,7 +496,7 @@ def initialize( self.st.steam_turbine.inlet_split.inlet.unfix() solver_obj.solve(self, tee=True) - init_log.info(f"Fix flow coefficent and free throttle") + init_log.info(f"Fix flow coefficient and free throttle") self.st.steam_turbine.throttle_valve[1].pressure_flow_equation.deactivate() self.st.steam_turbine.outlet_stage.flow_coeff.fix() solver_obj.solve(self, tee=True) diff --git a/idaes_examples/mod/power_gen/ngcc_soec_costing.py b/idaes_examples/mod/power_gen/ngcc_soec_costing.py index e1b9d13f..5d7423c7 100644 --- a/idaes_examples/mod/power_gen/ngcc_soec_costing.py +++ b/idaes_examples/mod/power_gen/ngcc_soec_costing.py @@ -101,7 +101,7 @@ def CO2_aux_load_constraint(b, t): return b.CO2_aux_load[t] == baseline_CO2_aux_load*(b.CO2_captured[t]/baseline_capture) # CO2 compressor auxiliary load - # this load is included in CO2_aux_load but needed seperatly for costing + # this load is included in CO2_aux_load but needed separately for costing m.fs.CO2_compressor_load = pyo.Var(m.fs.time, units=pyunits.kW) @m.fs.Constraint(m.fs.time) @@ -760,7 +760,7 @@ def get_ngcc_soec_capital_cost(m, CE_index_year): }, ) - # accounts with auxilliary load as the process parameter + # accounts with auxiliary load as the process parameter aux_load_accounts = ["11.2", "11.3", "11.4", "11.5", "11.6", "12.1", "12.2", "12.3", "12.4", "12.5", "12.6", "12.7", "12.8", "12.9"] diff --git a/idaes_examples/mod/power_gen/soc_dynamic_flowsheet.py b/idaes_examples/mod/power_gen/soc_dynamic_flowsheet.py index b2f5b0a8..d1277f37 100644 --- a/idaes_examples/mod/power_gen/soc_dynamic_flowsheet.py +++ b/idaes_examples/mod/power_gen/soc_dynamic_flowsheet.py @@ -1227,7 +1227,7 @@ def _add_tags(self): display_units=pyo.units.MW, ) tag_group["total_electric_power"] = iutil.ModelTag( - doc="Total electric power for SOEC and auxilaries", + doc="Total electric power for SOEC and auxiliaries", expr=self.total_electric_power[t0], format_string="{:.3f}", display_units=pyo.units.MW, diff --git a/idaes_examples/mod/power_gen/soec.py b/idaes_examples/mod/power_gen/soec.py index f30ef55d..033c0175 100644 --- a/idaes_examples/mod/power_gen/soec.py +++ b/idaes_examples/mod/power_gen/soec.py @@ -1111,19 +1111,19 @@ def _add_tags(self): display_units=pyo.units.MW, ) tag_group["total_electric_power"] = iutil.ModelTag( - doc="Total electric power for SOEC and auxilaries", + doc="Total electric power for SOEC and auxiliaries", expr=self.total_electric_power[0], format_string="{:.3f}", display_units=pyo.units.MW, ) tag_group["bop_power"] = iutil.ModelTag( - doc="Total electric power for SOEC and auxilaries", + doc="Total electric power for SOEC and auxiliaries", expr=self.total_electric_power[0] - self.soec_ac_power[0], format_string="{:.3f}", display_units=pyo.units.MW, ) tag_group["total_electric_power_per_h2"] = iutil.ModelTag( - doc="Total electric power for SOEC and auxilaries per H2 produced", + doc="Total electric power for SOEC and auxiliaries per H2 produced", expr=self.total_electric_power_per_h2[0], format_string="{:.3f}", display_units=pyo.units.kWh / pyo.units.kg, diff --git a/idaes_examples/mod/properties/thermophysical_property_example.py b/idaes_examples/mod/properties/thermophysical_property_example.py index 7014d769..53b83821 100644 --- a/idaes_examples/mod/properties/thermophysical_property_example.py +++ b/idaes_examples/mod/properties/thermophysical_property_example.py @@ -196,18 +196,18 @@ def initialize(blk, state_args={}, state_vars_fixed=False, with 0D blocks. - False - states have not been fixed. The state block will deal with fixing/unfixing. - solver : str indicating whcih solver to use during + solver : str indicating which solver to use during initialization (default = None, use default solver) hold_state : flag indicating whether the initialization routine should unfix any state variables fixed during initialization (default=False). - - True - states varaibles are not unfixed, and + - True - states variables are not unfixed, and a dict of returned containing flags for which states were fixed during initialization. - False - state variables are unfixed after initialization by calling the - relase_state method + release_state method Returns: If hold_states is True, returns a dict containing flags for which states were fixed during initialization. diff --git a/idaes_examples/notebooks/active/power_gen/ngcc/data_pfds/st_baseline.svg b/idaes_examples/notebooks/active/power_gen/ngcc/data_pfds/st_baseline.svg index 076158e0..f92b54ec 100644 --- a/idaes_examples/notebooks/active/power_gen/ngcc/data_pfds/st_baseline.svg +++ b/idaes_examples/notebooks/active/power_gen/ngcc/data_pfds/st_baseline.svg @@ -192,7 +192,7 @@ t16 - - \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3039,7 +3039,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Assert results approximatly agree with baseline reoprt\n", + "# Assert results approximately agree with baseline reoprt\n", "assert pyo.value(m.fs.net_power_mw[0]) == pytest.approx(646)\n", "assert pyo.value(m.fs.gross_power[0]) == pytest.approx(-690e6, rel=0.001)\n", "assert pyo.value(100 * m.fs.lhv_efficiency[0]) == pytest.approx(52.8, abs=0.1)\n", @@ -3216,4 +3216,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} \ No newline at end of file +} diff --git a/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_init.json.gz b/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_init.json.gz index ecb2deef..d27944ab 100644 Binary files a/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_init.json.gz and b/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_init.json.gz differ diff --git a/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_test.ipynb b/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_test.ipynb index 23411983..900511dc 100644 --- a/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_test.ipynb +++ b/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_test.ipynb @@ -189,7 +189,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Assert results approximatly agree with baseline reoprt\n", + "# Assert results approximately agree with baseline reoprt\n", "assert pyo.value(m.fs.net_power_mw[0]) == pytest.approx(646)\n", "assert pyo.value(m.fs.gross_power[0]) == pytest.approx(-690e6, rel=0.001)\n", "assert pyo.value(100 * m.fs.lhv_efficiency[0]) == pytest.approx(52.8, abs=0.1)\n", @@ -341,4 +341,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} \ No newline at end of file +} diff --git a/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_usr.ipynb b/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_usr.ipynb index 23411983..900511dc 100644 --- a/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_usr.ipynb +++ b/idaes_examples/notebooks/active/power_gen/ngcc/ngcc_usr.ipynb @@ -189,7 +189,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Assert results approximatly agree with baseline reoprt\n", + "# Assert results approximately agree with baseline reoprt\n", "assert pyo.value(m.fs.net_power_mw[0]) == pytest.approx(646)\n", "assert pyo.value(m.fs.gross_power[0]) == pytest.approx(-690e6, rel=0.001)\n", "assert pyo.value(100 * m.fs.lhv_efficiency[0]) == pytest.approx(52.8, abs=0.1)\n", @@ -341,4 +341,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} \ No newline at end of file +} diff --git a/idaes_examples/notebooks/active/power_gen/ngcc/steam_turbine_template.svg b/idaes_examples/notebooks/active/power_gen/ngcc/steam_turbine_template.svg index 7d1b06e5..49630870 100644 --- a/idaes_examples/notebooks/active/power_gen/ngcc/steam_turbine_template.svg +++ b/idaes_examples/notebooks/active/power_gen/ngcc/steam_turbine_template.svg @@ -1081,7 +1081,7 @@