-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMakefile
185 lines (133 loc) · 5.51 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!make
SHELL:=/bin/bash
include .env
export $(shell sed 's/[=\#].*//' .env)
HOSTNAME:=$(shell hostname)
DATA_PATH:=$(DATA_ROOT)/$(DATA_DIR)
RAW_PATH:=$(DATA_PATH)/raw
PDF_PATH:=$(DATA_PATH)/$(PDF_DIR)
PDF_TXT_PATH:=$(DATA_PATH)/$(PDF_TXT_DIR)
ABSTRACTS_TXT_PATH:=$(DATA_PATH)/$(ABSTRACTS_TXT_DIR)
TXT_PATH:=$(DATA_PATH)/$(TXT_DIR)
LDA_OUTPUT_PATH:=$(DATA_PATH)/$(LDA_OUTPUT_DIR)
CTR_OUTPUT_PATH:=$(DATA_PATH)/$(CTR_OUTPUT_DIR)
# disable implicit suffix rules
.SUFFIXES:
# default make target
all: clean_db write_db
# .env (environment variables)
.env:
if [ -f $(HOSTNAME).env ]; then cp -f $(HOSTNAME).env .env; fi
info:
@echo HOSTNAME=$(HOSTNAME)
@echo DATA_PATH=$(DATA_PATH)
@echo PDF_PATH=$(PDF_PATH)
@echo PDF_TXT_PATH=$(PDF_TXT_PATH)
@echo ABSTRACTS_TXT_PATH=$(ABSTRACTS_TXT_PATH)
@echo TXT_PATH=$(TXT_PATH)
@echo LDA_OUTPUT_PATH=$(LDA_OUTPUT_PATH)
@echo CTR_OUTPUT_PATH=$(CTR_OUTPUT_PATH)
# install requirements
su_require: su_ctr_require su_py_require su_r_require
require: r_require
su_ctr_require:
apt-get install libgsl-dev
su_py_require:
apt-get install python-pip
pip install --upgrade pip
pip install -r icml-pdf-conversion/requirements.txt
su_r_require:
apt-get install r-base libssl-dev libcurl4-openssl-dev libxml2-dev libv8-3.14-dev libudunits2-dev
r_require:
./requirements.r
# make lda-c
lda-c:
cd lda-c; $(MAKE); cd ..
# make ctr2
ctr2:
cd ctr2; $(MAKE); cd ..
# scrape data
SCRAPE_FILES = $(RAW_PATH)/schedule.json $(RAW_PATH)/events.json $(RAW_PATH)/authors.json
$(SCRAPE_FILES):
./$(SCRAPE_R_FILE)
scrape: $(SCRAPE_FILES)
clean_scrape:
rm -rf $(SCRAPE_FILES)
# process data
PROCESS_FILES = $(DATA_PATH)/papers.json $(DATA_PATH)/authors.json $(DATA_PATH)/schedule.json
$(PROCESS_FILES):
./$(PROCESS_R_FILE)
process: $(PROCESS_FILES)
clean_process:
rm -rf $(PROCESS_FILES)
# convert papers pdf to txt
pdf2txt:
python $(PDF_CONVERSION_PATH) -p '$(PDF_PATH)/*.pdf' -t $(PDF_TXT_PATH) -m pdf2txt
clean_pdf2txt:
rm -rf $(PDF_TXT_PATH)/*.txt
# write abstracts txt
abstracts_txt: $(DATA_PATH)/papers.json
./abstracts_txt.r
clean_abstracts_txt:
rm -rf $(ABSTRACTS_TXT_PATH)/*.txt
# convert txt files to dat
TXT2DAT_FILES = $(TXT_PATH)/$(MULT_FILE) $(TXT_PATH)/$(FILES_FILE) $(TXT_PATH)/$(VOCAB_FILE)
$(TXT2DAT_FILES):
./tokenize_txt.r
#python $(PDF_CONVERSION_PATH) -t $(TXT_PATH) -m txt2dat
txt2dat: $(TXT2DAT_FILES)
clean_txt2dat:
rm -f $(TXT2DAT_FILES)
# compute lda word distributions and documents topic distributions
LDA_FILES = $(LDA_OUTPUT_PATH)/final.gamma $(LDA_OUTPUT_PATH)/final.beta
$(LDA_FILES): $(TXT_PATH)/$(MULT_FILE)
lda-c/lda est $(LDA_ALPHA) $(LDA_N_TOPICS) $(LDA_SETTINGS_PATH) $(TXT_PATH)/$(MULT_FILE) random $(LDA_OUTPUT_PATH)
run_lda: $(LDA_FILES)
clean_run_lda:
rm -rf $(LDA_OUTPUT_PATH)
# download data
dl_data_zip:
mkdir -p $(DATA_PATH)
cd $(DATA_PATH)
wget $(DATA_ZIP_URL) -O .data.zip
unzip .data.zip
rm -f .data.zip
cd -
# make topics json
# TOPICS_FILES = $(DATA_PATH)/topics.json $(DATA_PATH)/topic_clusters.json $(DATA_PATH)/papers_topics.json
# $(TOPICS_FILES): $(TXT_PATH)/$(FILES_FILE) $(TXT_PATH)/$(VOCAB_FILE) $(LDA_OUTPUT_PATH)/final.gamma $(LDA_OUTPUT_PATH)/final.beta $(DATA_PATH)/papers.json
# ./topics.r
TOPICS_FILES = $(DATA_PATH)/topics.json $(DATA_PATH)/topic_clusters.json $(DATA_PATH)/papers_topics.json $(DATA_PATH)/theta_v.dat
$(TOPICS_FILES): $(TXT_PATH)/$(FILES_FILE) $(TXT_PATH)/$(VOCAB_FILE) $(TXT_PATH)/$(MULT_FILE) $(DATA_PATH)/papers.json
./lda_txt.r
topics: $(TOPICS_FILES)
clean_topics:
rm -f $(TOPICS_FILES)
# initialize couchdb
init_db: $(DATA_PATH)/papers_topics.json $(DATA_PATH)/authors.json $(DATA_PATH)/schedule.json $(DATA_PATH)/topics.json $(DATA_PATH)/topic_clusters.json
./init_couchdb.r
# read user likes and topic preferences from couchdb
READ_DB_FILES = $(DATA_PATH)/userids.dat $(DATA_PATH)/users.dat $(DATA_PATH)/items.dat $(DATA_PATH)/theta_u.dat
$(READ_DB_FILES):
./read_couchdb.r
read_db: $(READ_DB_FILES)
clean_db:
rm -f $(READ_DB_FILES)
# compute ctr latent features
CTR_FILES = $(CTR_OUTPUT_PATH)/final-U.dat $(CTR_OUTPUT_PATH)/final-V.dat
# $(CTR_FILES): $(DATA_PATH)/users.dat $(DATA_PATH)/items.dat $(DATA_PATH)/theta_u.dat $(LDA_OUTPUT_PATH)/final.gamma
# mkdir -p $(CTR_OUTPUT_PATH)
# ctr2/ctr --directory $(CTR_OUTPUT_PATH) --user $(DATA_PATH)/users.dat --item $(DATA_PATH)/items.dat --theta_v_init $(LDA_OUTPUT_PATH)/final.gamma --theta_u_init $(DATA_PATH)/theta_u.dat --num_factors $(LDA_N_TOPICS) --a ${CTR_A} --b ${CTR_B} --alpha_u_smooth $(CTR_ALPHA_U_SMOOTH) --alpha_v_smooth $(CTR_ALPHA_V_SMOOTH) --lambda_u $(CTR_LAMBDA_U) --lambda_v $(CTR_LAMBDA_V) --max_iter ${CTR_MAX_ITER}
$(CTR_FILES): $(DATA_PATH)/users.dat $(DATA_PATH)/items.dat $(DATA_PATH)/theta_u.dat
mkdir -p $(CTR_OUTPUT_PATH)
ctr2/ctr --directory $(CTR_OUTPUT_PATH) --user $(DATA_PATH)/users.dat --item $(DATA_PATH)/items.dat --theta_v_init $(DATA_PATH)/theta_v.dat --theta_u_init $(DATA_PATH)/theta_u.dat --num_factors $(LDA_N_TOPICS) --a ${CTR_A} --b ${CTR_B} --alpha_u_smooth $(CTR_ALPHA_U_SMOOTH) --alpha_v_smooth $(CTR_ALPHA_V_SMOOTH) --lambda_u $(CTR_LAMBDA_U) --lambda_v $(CTR_LAMBDA_V) --max_iter ${CTR_MAX_ITER}
run_ctr: $(CTR_FILES)
clean_run_ctr:
rm -rf $(CTR_OUTPUT_PATH)
# write recommendations to couchdb
write_db: $(DATA_PATH)/userids.dat $(CTR_OUTPUT_PATH)/final-U.dat $(CTR_OUTPUT_PATH)/final-V.dat
./write_couchdb.r
# clean
CLEAN_TARGETS = clean_scrape clean_pdf2txt clean_abstracts_txt clean_txt2dat clean_run_lda clean_topics clean_db clean_run_ctr
clean: $(CLEAN_TARGETS)
.PHONY: .env $(CLEAN_TARGETS) clean