Skip to content

ICB-DCM/pyPESTO

Folders and files

NameName
Last commit message
Last commit date
Dec 2, 2024
Nov 26, 2024
Mar 11, 2023
Dec 2, 2024
Dec 2, 2024
Apr 5, 2024
Apr 28, 2023
Mar 5, 2024
Jan 15, 2024
Oct 30, 2024
Jul 12, 2022
Aug 1, 2022
Oct 2, 2024
Sep 5, 2018
Sep 25, 2024
Apr 5, 2024
Nov 27, 2024
Dec 13, 2022
Nov 26, 2024
Apr 17, 2021
Nov 27, 2024

Repository files navigation

pyPESTO - Parameter EStimation TOolbox for python

pyPESTO logo

pyPESTO is a widely applicable and highly customizable toolbox for parameter estimation.

PyPI CI Coverage Documentation DOI

Feature overview

Feature overview of pyPESTO. Figure taken from the Bioinformatics publication.

pyPESTO features include:

  • Parameter estimation interfacing multiple optimization algorithms including multi-start local and global optimization. (example, overview of optimizers)
  • Interface to multiple simulators including
    • AMICI for efficient simulation and sensitivity analysis of ordinary differential equation (ODE) models. (example)
    • RoadRunner for simulation of SBML models. (example)
    • Jax and Julia for automatic differentiation.
  • Uncertainty quantification using various methods:
    • Profile likelihoods.
    • Sampling using Markov chain Monte Carlo (MCMC), parallel tempering, and interfacing other samplers including emcee, pymc and dynesty. (example)
    • Variational inference
  • Complete parameter estimation pipeline for systems biology problems specified in SBML and PEtab. (example)
  • Parameter estimation pipelines for different modes of data:
  • Model selection. (example)
  • Various visualization methods to analyze parameter estimation results.

Quick install

The simplest way to install pyPESTO is via pip:

pip3 install pypesto

More information is available here: https://pypesto.readthedocs.io/en/latest/install.html

Documentation

The documentation is hosted on readthedocs.io: https://pypesto.readthedocs.io

Examples

Multiple use cases are discussed in the documentation. In particular, there are jupyter notebooks in the doc/example directory.

Contributing

We are happy about any contributions. For more information on how to contribute to pyPESTO check out https://pypesto.readthedocs.io/en/latest/contribute.html

How to Cite

Citeable DOI for the latest pyPESTO release: DOI

When using pyPESTO in your project, please cite

  • Schälte, Y., Fröhlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P., Lakrisenko, P., Wang, D., Raimúndez, E., Merkt, S., Schmiester, L., Städter, P., Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A modular and scalable tool for parameter estimation for dynamic models, Bioinformatics, 2023, btad711, doi:10.1093/bioinformatics/btad711

When presenting work that employs pyPESTO, feel free to use one of the icons in doc/logo/:

pyPESTO Logo

There is a list of publications using pyPESTO. If you used pyPESTO in your work, we are happy to include your project, please let us know via a GitHub issue.

References

pyPESTO supersedes PESTO a parameter estimation toolbox for MATLAB, whose development is discontinued.