-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
101 lines (84 loc) · 4.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import requests
from bs4 import BeautifulSoup
# with open('nips2019_paper.html','rb') as f:
# text = f.read()
def get_write_file():
re = requests.session()
r = re.get(r'https://nips.cc/Conferences/2019/AcceptedPapersInitial')
# print(r.text)
soup = BeautifulSoup(r.text,'html.parser')
paper_div = soup.find_all(class_='col-xs-9')[1]
paper_list = list(paper_div.find_all('b'))
paper_list = [str(x).lstrip('<b>').rstrip('</b>') for x in paper_list]
with open('nips2019_paper_name.txt','wb') as f:
for name in paper_list:
f.write(bytes(name,'utf-8') + bytes('\n','utf-8'))
def classify_paper():
class_dict = {'检测类':['Detection','Detect',], # 物体检测,异常检测,三维物体检测
'分割类' : ['Segmentation', ], # 分割相关 语义分割 实例分割 物体分割
'分类识别' : ['Classification', 'Recognition'], # 分类 识别
'姿态' : ['Pose'], # 姿态估计
'跟踪' : ['Track', 'Tracking'], # 目标跟踪
'视频相关' : ['Video'], # 视频
'强化学习' : ['Reinforcement', 'Reinforce', 'Reinforcing'], # 强化学习
'超分辨率' : ['Super-resolution', 'Super Resolution', 'Resolution'], # 超分辨率
'3D点云重建类' : ['3D', 'Point Cloud', 'Reconstruction'], # 3D 点云 重建
'生成模型' : ['GAN', 'Generative','Generation','Generating','autoencoders','Auto-Encoder','VAE'], # Gan 生成模型 对抗
'few_shot' : ['Few-shot', 'One-shot', 'Meta-Learning','Zero-shot'], # few-shot one-shot 小样本学习 元学习
'语言文字处理' : ['Text', 'Language'], # 文本 语言处理
'机器学习' : ['Bayes', 'Bayesian', 'tree', 'optimization','Machine Learning',
'Metric Learning','Low-Rank','Low Rank','gaussian process','Regression',
'Flow','Markov','boosting','bagging','Monte','Distribution','Cluster',
], # 机器学习 优化
'可解释性' : ['Interpretable', 'Interpretability', 'Interpretation', 'Explanations'], # 可解释学习
'表征表示':['Representation'], # 表征 表示
'数据集与benchmark':['Benchmark','Dateset'] ,# 数据集、Benchmark
'embedding':['Embedding'], # 嵌入
'注意力模型':['Attention'], # 注意力模型
'去噪':['denoising','denoise','Denoisers'] ,# 去噪
'与网络相关的':['Net','Network','CNN','RNN'], # 与网络相关的论文
'与网络架构相关的':['Architecture','NAS'], # 网络架构 架构搜索
'非监督半监督学习':['unsupervised','Semi-Supervised'], # 非监督学习 半监督学习
'图相关':['graph','GNN'], # 图相关
'对抗攻击相关':['Adversarial','Attack'], # 对抗相关
'模型剪枝压缩':['Pruning','compression','compress'] # 模型压缩
}
for cate in class_dict.keys():
keywords_list = class_dict.get(cate)
# 读取论文名称到列表中
with open('nips2019_paper_name.txt','r') as f1:
paper_name_list = f1.readlines()
paper_name_list = [x[0:-1] for x in paper_name_list]
with open('./nips2019_results/' + str(cate)+'.txt','w') as f2:
for index,paper_name in enumerate(paper_name_list):
flag = False
for keyword in keywords_list:
if paper_name.lower().find(keyword.lower()) >= 0:
flag = True
if flag == True:
f2.write(paper_name+'\n')
paper_name_list[index] = paper_name + ' OOO'
print('cate : '+ str(cate) + ' is done!\n')
with open('nips2019_paper_name.txt','w') as f:
for name in paper_name_list:
f.write(name +'\n')
def count_classified_papers():
counts = 0
non_used_paper = []
with open('nips2019_paper_name.txt', 'r') as f1:
paper_name_list = f1.readlines()
paper_name_list = [x[0:-1] for x in paper_name_list]
# print(paper_name_list)
for name in paper_name_list:
if name.endswith('OOO'):
counts += 1
else:
non_used_paper.append(name)
with open('no_used_paper.txt','w') as f2:
for name in non_used_paper:
f2.write(name + '\n')
print(counts)
if __name__ == '__main__':
get_write_file()
classify_paper()
count_classified_papers()