-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_v0.2_pytorch_fzy.py
284 lines (226 loc) · 10.4 KB
/
train_v0.2_pytorch_fzy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import mne
import torch
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
from torch.utils.data import DataLoader, RandomSampler
from torch.utils.data import TensorDataset, random_split
from torch.nn import CrossEntropyLoss
from torch.nn.utils import clip_grad_norm_
from torch.optim import Adam,lr_scheduler
from tqdm import tqdm
from Algorithm.EEGModels import *
from CCAClass import CNNmodel
#标准标准化&平衡化- 格式如(25000,1)
def label_transform(labels):
encoder = preprocessing.LabelEncoder()#标准化
encoder.fit(labels)
encoded_labels = encoder.transform(labels)
return encoded_labels
def fetch_data_label(pkl_path):
#闭源
def change_samples(X, y, samples): # 30,64,1001 samples=200
num_feature = X.shape[0]
tmp = 250 * tmax
X = X[:, :, :tmp] # 30,64,1000
X = X.transpose((1, 0, 2)) # 64,30,1000
add_num = tmp // samples # 5 30*1000=200*150 (samples*features)
# axis_1 = int(30 * add_num)#150
X = X.reshape(X.shape[0], -1, samples) # 64,150,200
X = X.transpose((1, 0, 2)) # 150,64,200
y = np.broadcast_to(y, (add_num, num_feature)) # 30->(5,30)
y = y.transpose() # (30,5)
y = y.reshape(-1) # (150,)
return X, y
obj = pd.read_pickle(pkl_path)
obj['ch_names'] = obj['ch_names'] + ('stim',)
raw = mne.io.RawArray(obj["data"], mne.create_info(obj["ch_names"], 250, ch_types=ch_types))
raw.filter(2, None, method='iir') # replace baselining with high-pass
tmin, tmax = 0, 4#4
events = mne.find_events(raw)
event_dict = {'hand/left': 201, 'hand/right': 202, 'feet': 203}
picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False)
epochs = mne.Epochs(raw, events, event_dict, tmin, tmax, proj=False,
picks=picks, baseline=None, preload=True, verbose=False)
labels = epochs.events[:, -1]
labels = label_transform(labels)
X = epochs.get_data()
# X, y = change_samples(X, labels - 201, samples)
X, y = change_samples(X, labels, samples)
# y = np_utils.to_categorical(y)
return X, y
def get_data(id):
X_train_1,Y_train_1 = fetch_data_label('../data/train/S0{}/block_1.pkl'.format(id))
X_train_2,Y_train_2 = fetch_data_label('../data/train/S0{}/block_2.pkl'.format(id))
X_train_3,Y_train_3 = fetch_data_label('../data/train/S0{}/block_3.pkl'.format(id))
X = np.concatenate((X_train_1,X_train_2,X_train_3))
Y = np.concatenate((Y_train_1,Y_train_2,Y_train_3))
return X,Y
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)
#分割数据集->可加入test-->默认8:1:1
def torch_dataset(data,labels):
data = torch.Tensor(data)
data = data.unsqueeze(dim=1)
labels = torch.Tensor(labels)
dataset = TensorDataset(data,labels)
return dataset
def build_dataloader(train_dataset,val_dataset,test_dataset,batch_size):
train_dataloader = DataLoader(
train_dataset, # 训练数据.
sampler=RandomSampler(train_dataset), # 打乱顺序
batch_size=batch_size,
drop_last=True)
valid_dataloader = DataLoader(
val_dataset, # 验证数据.
sampler=RandomSampler(val_dataset), # 打乱顺序
batch_size=batch_size,
drop_last=True)
test_dataloader = DataLoader(
test_dataset, # 验证数据.
sampler=RandomSampler(test_dataset), # 打乱顺序
batch_size=batch_size,
drop_last=False)
return train_dataloader,valid_dataloader,test_dataloader
if __name__ == '__main__':
ch_types = []
for i in range(64):
ch_types.append('eeg')
ch_types.append('stim')
IMAGES_PATH = 'img'
batch_size = 64
samples = 10#30
epochs = 100
resulst_log = []
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if not os.path.exists("img/fzy_img"):
os.makedirs("img/fzy_img")
for index in [1,2,3,4,5]:
X,Y = get_data(index)#450,64,200
num_class = len(set(Y.tolist()))
X_train,X_rem,Y_train,Y_rem = train_test_split(X,Y,test_size=0.6)
X_val,X_test,Y_val,Y_test = train_test_split(X_rem,Y_rem,test_size=0.5)
#数据增强
X_train = np.concatenate((X_train,X_train))
Y_train = np.concatenate((Y_train,Y_train))
train_set = torch_dataset(X_train, Y_train)
val_set = torch_dataset(X_val, Y_val)
test_set = torch_dataset(X_test, Y_test)
train_loader, valid_loader, test_loader = build_dataloader(train_set, val_set, test_set, batch_size)
dataloaders = {'train': train_loader, 'valid': valid_loader, 'test': test_loader}
dataset_sizes = {'train': len(train_set), 'valid': len(val_set)}
model = CNNmodel().to(device)
print(model.parameters) # 打印模型参数
history = dict()#记录每轮acc和loss
history['acc'],history['loss'],history['val_acc'],history['val_loss']=[],[],[],[]
criterion = CrossEntropyLoss() # 此损失函数 模型最后不需要softmax
optimizer = Adam(model.parameters(), lr=1e-3, eps=1e-08) # clipnorm=1.0, add later
# 学习率指数衰减,每次epoch:学习率 = gamma * 学习率
scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=0.999)
best_epoch = 0
best_acc = 0.0
best_loss = float("inf")
model_path = ""
#训练
for epoch in range(epochs):
print('Epoch {}/{}'.format(epoch + 1, epochs))
print('-' * 20)
running_loss = 0.0
running_corrects = 0
for inputs, labels in tqdm(dataloaders['train']):
torch.cuda.empty_cache()
model.train() # Set model to training mode
inputs = inputs.to(device)
labels = labels.long().to(device) # [24,]=[batch_size,]
outputs,_ = model(inputs) # [24,3]=[batch_size,nclass]
preds = torch.max(outputs, 1)[1] # [24,]
loss = criterion(outputs, labels) # 计算损失
# train特有
loss.backward() # 反向传播
clip_grad_norm_(model.parameters(), max_norm=1.0) # clipnorm=1.0, 先剪枝 再更新
optimizer.step() # 更新优化器权重
scheduler.step() # 更新学习率
optimizer.zero_grad() # 清空梯度
running_corrects += torch.sum(preds == labels)
running_loss += loss.item()
epoch_acc = running_corrects / dataset_sizes['train']
epoch_loss = running_loss / dataset_sizes['train']
print('Train Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))
history['acc'].append(epoch_acc)
history['loss'].append(epoch_loss)
running_loss = 0.0
running_corrects = 0
for inputs, labels in tqdm(dataloaders['valid']):
torch.cuda.empty_cache()
model.eval() # Set model to training mode
inputs = inputs.to(device)
labels = labels.long().to(device)
with torch.no_grad(): # 停用累加梯度
outputs,_ = model(inputs)
preds = torch.max(outputs, 1)[1] # [24,]
loss = criterion(outputs, labels)
running_loss += loss.item()
running_corrects += torch.sum(preds == labels)
epoch_loss = running_loss / dataset_sizes['valid']
epoch_acc = running_corrects / dataset_sizes['valid']
print('Valid Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))
history['val_acc'].append(epoch_acc)
history['val_loss'].append(epoch_loss)
if epoch_loss < best_loss:
best_epoch = epoch
best_acc = epoch_acc
best_loss = epoch_loss
# if epoch_acc > best_acc:
# best_epoch = epoch
# best_acc = epoch_acc
# best_loss = epoch_loss
# 保存模型
model_path = "saved/best_model_torch_{}.h5".format(index)
torch.save(model.state_dict(), model_path)
print("Checkpoint Saved")
print()
print('Best val Acc: {:4f}'.format(best_acc))
print('Best val Loss: {:4f}'.format(best_loss))
print('Best Epoch of is {}'.format(best_epoch + 1))
plt.plot(history['acc'],label='acc')
plt.plot(history['loss'],label='loss')
plt.plot(history['val_acc'],label='val_acc')
plt.plot(history['val_loss'],label='val_loss')
plt.title('rec_{}'.format(index))
plt.legend()
plt.savefig("img/fzy_img/rec_torch_{}.png".format(index), dpi=400)
plt.show()
#测试
y_true = np.array([])
y_pred = np.array([])
model.load_state_dict(torch.load(model_path))
model.eval()
for inputs, labels in tqdm(test_loader):
inputs = inputs.to(device) # 放入显存,如果有
labels = labels.to(device).long().cpu()
y_true = np.append(y_true, labels.numpy())
with torch.no_grad(): # 停用累加梯度
outputs,_ = model(inputs)
preds = torch.max(outputs, 1)[1].cpu()
y_pred = np.append(y_pred, preds.numpy())
acc_arr = accuracy_score(y_true, y_pred)
rec_arr = recall_score(y_true, y_pred, average='macro')
pre_arr = precision_score(y_true, y_pred, average='macro')
f1_arr = f1_score(y_true, y_pred, average='macro')
f1_arr_mic = f1_score(y_true, y_pred, average='micro')
print("Accuracy: ", acc_arr)
print("Recall: ", rec_arr)
print("Precision: ", pre_arr)
print("F1 score: ", f1_arr)
print("F1 score Micro: ", f1_arr_mic)
resulst_log.append(acc_arr)#记录每个被试 测试集的acc
for i,acc in enumerate(resulst_log):
print("第{}个被试的准确率为{:.2%}".format(i+1,acc))