-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathERP.py
209 lines (163 loc) · 8.22 KB
/
ERP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
Sample script using EEGNet to classify Event-Related Potential (ERP) EEG data
from a four-class classification task, using the sample dataset provided in
the MNE [1, 2] package:
https://martinos.org/mne/stable/manual/sample_dataset.html#ch-sample-data
The four classes used from this dataset are:
LA: Left-ear auditory stimulation
RA: Right-ear auditory stimulation
LV: Left visual field stimulation
RV: Right visual field stimulation
The code to process, filter and epoch the data are originally from Alexandre
Barachant's PyRiemann [3] package, released under the BSD 3-clause. A copy of
the BSD 3-clause license has been provided together with this software to
comply with software licensing requirements.
When you first run this script, MNE will download the dataset and prompt you
to confirm the download location (defaults to ~/mne_data). Follow the prompts
to continue. The dataset size is approx. 1.5GB download.
For comparative purposes you can also compare EEGNet performance to using
Riemannian geometric approaches with xDAWN spatial filtering [4-8] using
PyRiemann (code provided below).
"""
import numpy as np
import datetime
# mne imports
import mne
from mne import io
from mne.datasets import sample
# EEGNet-specific imports
from Algorithm.EEGModels import *
import tensorflow as tf
from tensorflow.keras import utils as np_utils
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras import backend as K
# PyRiemann imports
from pyriemann.estimation import XdawnCovariances
from pyriemann.tangentspace import TangentSpace
from pyriemann.utils.viz import plot_confusion_matrix
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
# tools for plotting confusion matrices
from matplotlib import pyplot as plt
# while the default tensorflow ordering is 'channels_last' we set it here
# to be explicit in case if the user has changed the default ordering
K.set_image_data_format('channels_last')
##################### Process, filter and epoch the data ######################
data_path = sample.data_path()
# Set parameters and read data
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
tmin, tmax = -0., 1
event_id = dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4)
# Setup for reading the raw data
raw = io.Raw(raw_fname, preload=True, verbose=False)
raw.filter(2, None, method='iir') # replace baselining with high-pass
events = mne.read_events(event_fname)
raw.info['bads'] = ['MEG 2443'] # set bad channels
picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
exclude='bads')
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False,
picks=picks, baseline=None, preload=True, verbose=False)
labels = epochs.events[:, -1]
# extract raw data. scale by 1000 due to scaling sensitivity in deep learning
X = epochs.get_data()*1000 # format is in (trials, channels, samples)
y = labels
kernels, chans, samples = 1, 60, 151
print(np.shape(X))
# take 50/25/25 percent of the data to train/validate/test
X_train = X[0:144,]
Y_train = y[0:144]
X_validate = X[144:216,]
Y_validate = y[144:216]
X_test = X[216:,]
Y_test = y[216:]
############################# EEGNet portion ##################################
log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
# convert labels to one-hot encodings.
Y_train = np_utils.to_categorical(Y_train-1)
Y_validate = np_utils.to_categorical(Y_validate-1)
Y_test = np_utils.to_categorical(Y_test-1)
# convert data to NHWC (trials, channels, samples, kernels) format. Data
# contains 60 channels and 151 time-points. Set the number of kernels to 1.
X_train = X_train.reshape(X_train.shape[0], chans, samples, kernels)
X_validate = X_validate.reshape(X_validate.shape[0], chans, samples, kernels)
X_test = X_test.reshape(X_test.shape[0], chans, samples, kernels)
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# configure the EEGNet-8,2,16 model with kernel length of 32 samples (other
# model configurations may do better, but this is a good starting point)
model = EEGNet(nb_classes = 4, Chans = chans, Samples = samples,
dropoutRate = 0.5)
# compile the model and set the optimizers
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics = ['accuracy'])
# count number of parameters in the model
numParams = model.count_params()
# set a valid path for your system to record model checkpoints
checkpointer = ModelCheckpoint(filepath='/tmp/checkpoint.h5', verbose=1,
save_best_only=True)
###############################################################################
# if the classification task was imbalanced (significantly more trials in one
# class versus the others) you can assign a weight to each class during
# optimization to balance it out. This data is approximately balanced so we
# don't need to do this, but is shown here for illustration/completeness.
###############################################################################
# the syntax is {class_1:weight_1, class_2:weight_2,...}. Here just setting
# the weights all to be 1
class_weights = {0:1, 1:1, 2:1, 3:1}
start = datetime.datetime.now()
################################################################################
# fit the model. Due to very small sample sizes this can get
# pretty noisy run-to-run, but most runs should be comparable to xDAWN +
# Riemannian geometry classification (below)
################################################################################
fittedModel = model.fit(X_train, Y_train, batch_size = 16,epochs = 2000,
verbose = 2, validation_data=(X_validate, Y_validate),
callbacks=[tensorboard_callback], class_weight = class_weights)
# load optimal weights
model.load_weights('/tmp/checkpoint.h5')
###############################################################################
# can alternatively used the weights provided in the repo. If so it should get
# you 93% accuracy. Change the WEIGHTS_PATH variable to wherever it is on your
# system.
###############################################################################
# WEIGHTS_PATH = /path/to/EEGNet-8-2-weights.h5
# model.load_weights(WEIGHTS_PATH)
###############################################################################
# make prediction on test set.
###############################################################################
probs = model.predict(X_test)
preds = probs.argmax(axis = -1)
acc = np.mean(preds == Y_test.argmax(axis=-1))
print("Classification accuracy: %f " % (acc))
end = datetime.datetime.now()
interval = end - start
print(interval.seconds)
############################# PyRiemann Portion ##############################
# code is taken from PyRiemann's ERP sample script, which is decoding in
# the tangent space with a logistic regression
n_components = 2 # pick some components
# set up sklearn pipeline
clf = make_pipeline(XdawnCovariances(n_components),
TangentSpace(metric='riemann'),
LogisticRegression())
preds_rg = np.zeros(len(Y_test))
# reshape back to (trials, channels, samples)
X_train = X_train.reshape(X_train.shape[0], chans, samples)
X_test = X_test.reshape(X_test.shape[0], chans, samples)
# train a classifier with xDAWN spatial filtering + Riemannian Geometry (RG)
# labels need to be back in single-column format
clf.fit(X_train, Y_train.argmax(axis = -1))
preds_rg = clf.predict(X_test)
# Printing the results
acc2 = np.mean(preds_rg == Y_test.argmax(axis = -1))
print("Classification accuracy: %f " % (acc2))
# plot the confusion matrices for both classifiers
names = ['audio left', 'audio right', 'vis left', 'vis right']
plt.figure(0)
plot_confusion_matrix(preds, Y_test.argmax(axis = -1), names, title = 'EEGNet-8,2')
plt.figure(1)
plot_confusion_matrix(preds_rg, Y_test.argmax(axis = -1), names, title = 'xDAWN + RG')