diff --git a/docs/source/guide/prompts_examples.md b/docs/source/guide/prompts_examples.md
new file mode 100644
index 000000000000..c9d099795370
--- /dev/null
+++ b/docs/source/guide/prompts_examples.md
@@ -0,0 +1,203 @@
+---
+title: Prompts examples
+short: Examples
+tier: enterprise
+type: guide
+order: 0
+order_enterprise: 236
+meta_title: Prompts examples
+meta_description: Example use cases for Prompts
+section: Prompts
+date: 2025-01-15 12:11:22
+---
+
+
+## Autolabel image captions 
+
+This example demonstrates how to set up Prompts to predict image captions.
+
+1. [Create a new label studio project](setup_project) by importing image data via [cloud storage](storage). 
+
+!!! note
+    Prompts does not currently support image data uploaded as raw images. Only image references (HTTP URIs to images) or images imported via cloud storage are supported. 
+
+!!! info Tip
+    If you’d like to, you can generate a dataset to test the process using [https://data.heartex.net](https://data.heartex.net).
+
+2. Create a [label config](setup) for image captioning, for example:
+
+```xml
+<View>
+  <Image name="image" value="$image"/>
+  <Header value="Describe the image:"/>
+  <TextArea name="caption" toName="image" placeholder="Enter description here..."
+            rows="5" maxSubmissions="1"/>
+</View>
+```
+3. Navigate to **Prompts** from the sidebar, and [create a prompt](prompts_create) for the project
+
+!!! note
+    If you have not yet set up API the keys you want to use, do that now: [API keys](prompts_create#Model-provider-API-keys). 
+
+4. Add the instruction you’d like to provide the LLM to caption your images. For example:
+
+    *Explain the contents of the following image: `{image}`*
+
+!!! note
+    Ensure you include `{image}` in your instructions. Click `image` above the instruction field to insert it. 
+
+![Screenshot pointing to how to insert image into your instructions](/images/prompts/example_insert_image.png)
+
+!!! info Tip
+    You can also automatically generate the instructions using the [**Enhance Prompt** action](prompts_draft#Enhance-prompt). Before you can use this action, you must at least add the variable name `{image}` and then click **Save**. 
+
+![Screenshot pointing to Enhance Prompt action](/images/prompts/example_enhance_prompt.png)
+
+5. Run the prompt. View predictions to accept or correct.
+
+    You can [read more about evaluation metrics](prompts_draft#Evaluation-results) and ways to assess your prompt performance. 
+
+!!! info Tip
+    Use the drop-down menu above the results field to change the subset of data being used (e.g. only data with Ground Truth annotations, or a small sample of records). 
+
+![Screenshot pointing to subset dropdown](/images/prompts/example_subset.png)
+
+6. Accept the [predictions as annotations](prompts_predictions#Create-annotations-from-predictions).
+
+
+## Evaluate LLM outputs for toxicity
+
+This example demonstrates how to set up Prompts to evaluate if the LLM-generated output text is classified as harmful, offensive, or inappropriate.
+
+1. [Create a new label studio project](setup_project) by importing text data of LLM-generated outputs. 
+
+    You can use this preprocessed sample of the [jigsaw_toxicity](https://huggingface.co/datasets/tasksource/jigsaw_toxicity) dataset as an example. See [the appendix](#Appendix-Generate-dataset) for how this was generated. 
+2. Create a [label config](setup) for toxicity detection, for example:
+
+```xml
+<View>
+  <Header value="Comment" />
+  <Text name="comment" value="$comment_text"/>
+  
+  <Header value="Toxic" size="3"/>
+  <Choices name="toxic" toName="comment" choice="single" showInline="true">
+    <Choice value="Yes" alias="1"/>
+    <Choice value="No" alias="0"/>
+  </Choices>
+  <Header value="Severely Toxic" size="3"/>
+  <Choices name="severe_toxic" toName="comment" choice="single" showInline="true">
+    <Choice value="Yes" alias="1"/>
+    <Choice value="No" alias="0"/>
+  </Choices>
+  <Header value="Insult" size="3"/>
+  <Choices name="insult" toName="comment" choice="single" showInline="true">
+    <Choice value="Yes" alias="1"/>
+    <Choice value="No" alias="0"/>
+  </Choices>
+  <Header value="Threat" size="3"/>
+  <Choices name="threat" toName="comment" choice="single" showInline="true">
+    <Choice value="Yes" alias="1"/>
+    <Choice value="No" alias="0"/>
+  </Choices>
+  <Header value="Obscene" size="3"/>
+  <Choices name="obscene" toName="comment" choice="single" showInline="true">
+    <Choice value="Yes" alias="1"/>
+    <Choice value="No" alias="0"/>
+  </Choices>
+  <Header value="Identity Hate" size="3"/>
+  <Choices name="identity_hate" toName="comment" choice="single" showInline="true">
+    <Choice value="Yes" alias="1"/>
+    <Choice value="No" alias="0"/>
+  </Choices>
+  
+  <Header value="Reasoning" size="3"/>
+  <TextArea name="reasoning" toName="comment" editable="true" placeholder="Provide reasoning for your choices here..."/>
+</View>
+```
+
+3. Navigate to **Prompts** from the sidebar, and [create a prompt](prompts_create) for the project
+
+!!! note
+    If you have not yet set up API the keys you want to use, do that now: [API keys](prompts_create#Model-provider-API-keys). 
+
+4. Add the instruction you’d like to provide the LLM to best evaluate the text. For example:
+
+    *Determine whether the following text falls into any of the following categories (for each, provide a "0" for False and "1" for True):*
+    
+    *toxic, severe_toxic, insult, threat, obscene, and identity_hate.*
+
+    *Comment:*
+
+    *`{comment_text}`*
+
+
+!!! note
+    Ensure you include `{comment_text}` in your instructions. Click `comment_text` above the instruction field to insert it. 
+
+![Screenshot pointing to how to insert comment text into your instructions](/images/prompts/example_insert_comment_text.png)
+
+!!! info Tip
+    You can also automatically generate the instructions using the [**Enhance Prompt** action](prompts_draft#Enhance-prompt). Before you can use this action, you must at least add the variable name `{comment_text}` and then click **Save**. 
+
+![Screenshot pointing to Enhance Prompt action](/images/prompts/example_enhance_prompt2.png)
+
+5. Run the prompt. View predictions to accept or correct.
+
+    You can [read more about evaluation metrics](prompts_draft#Evaluation-results) and ways to assess your prompt performance. 
+
+!!! info Tip
+    Use the drop-down menu above the results field to change the subset of data being used (e.g. only data with Ground Truth annotations, or a small sample of records). 
+
+![Screenshot pointing to subset dropdown](/images/prompts/example_subset2.png)
+
+6. Accept the [predictions as annotations](prompts_predictions#Create-annotations-from-predictions). 
+
+### Appendix: Generate dataset
+
+Download the jigsaw_toxicity dataset, then downsample/format using the following script (modify the `INPUT_PATH` and `OUTPUT_PATH` to suit your needs):
+
+```python
+import pandas as pd
+import json
+
+
+def gen_task(row):
+    labels = [
+        {
+            "from_name": field,
+            "to_name": "comment",
+            "type": "choices",
+            "value": {"choices": [str(int(row._asdict()[field]))]},
+        }
+        for field in [
+            "toxic",
+            "severe_toxic",
+            "insult",
+            "threat",
+            "obscene",
+            "identity_hate",
+        ]
+    ]
+    return {
+        "data": {"comment_text": row.comment_text},
+        "annotations": [
+            {
+                "result": labels,
+                "ground_truth": True,
+                "was_cancelled": False,
+            }
+        ],
+    }
+
+
+INPUT_PATH = "/Users/pakelley/Downloads/Jigsaw Toxicity Train.csv"
+OUTPUT_PATH = "/Users/pakelley/Downloads/toxicity-sample-ls-format.json"
+
+df = pd.read_csv(INPUT_PATH)
+sample = df.sample(n=100)
+label_studio_tasks = [gen_task(row) for row in sample.itertuples()]
+with open(OUTPUT_PATH, "w") as f:
+    json.dump(label_studio_tasks, f)
+```
+
+If you choose to, you could also easily change how many records to use (or use the entire dataset by removing the sample step). 
\ No newline at end of file
diff --git a/docs/themes/v2/source/images/prompts/example_enhance_prompt.png b/docs/themes/v2/source/images/prompts/example_enhance_prompt.png
new file mode 100644
index 000000000000..c2b1748a053e
Binary files /dev/null and b/docs/themes/v2/source/images/prompts/example_enhance_prompt.png differ
diff --git a/docs/themes/v2/source/images/prompts/example_enhance_prompt2.png b/docs/themes/v2/source/images/prompts/example_enhance_prompt2.png
new file mode 100644
index 000000000000..f6630717227c
Binary files /dev/null and b/docs/themes/v2/source/images/prompts/example_enhance_prompt2.png differ
diff --git a/docs/themes/v2/source/images/prompts/example_insert_comment_text.png b/docs/themes/v2/source/images/prompts/example_insert_comment_text.png
new file mode 100644
index 000000000000..7ccf6623d521
Binary files /dev/null and b/docs/themes/v2/source/images/prompts/example_insert_comment_text.png differ
diff --git a/docs/themes/v2/source/images/prompts/example_insert_image.png b/docs/themes/v2/source/images/prompts/example_insert_image.png
new file mode 100644
index 000000000000..e2b2eea496fe
Binary files /dev/null and b/docs/themes/v2/source/images/prompts/example_insert_image.png differ
diff --git a/docs/themes/v2/source/images/prompts/example_subset.png b/docs/themes/v2/source/images/prompts/example_subset.png
new file mode 100644
index 000000000000..87c6d6c18047
Binary files /dev/null and b/docs/themes/v2/source/images/prompts/example_subset.png differ
diff --git a/docs/themes/v2/source/images/prompts/example_subset2.png b/docs/themes/v2/source/images/prompts/example_subset2.png
new file mode 100644
index 000000000000..2a674f15fadb
Binary files /dev/null and b/docs/themes/v2/source/images/prompts/example_subset2.png differ