diff --git a/docs/source/guide/ml_tutorials.html b/docs/source/guide/ml_tutorials.html
index ab8b112b2181..0c065faf759e 100644
--- a/docs/source/guide/ml_tutorials.html
+++ b/docs/source/guide/ml_tutorials.html
@@ -1,35 +1,5 @@
---
cards:
-- categories:
- - Computer Vision
- - Image Annotation
- - Object Detection
- - Grounding DINO
- hide_frontmatter_title: true
- hide_menu: true
- image: /tutorials/grounding-dino.png
- meta_description: Label Studio tutorial for using Grounding DINO for zero-shot object
- detection in images
- meta_title: Image segmentation in Label Studio using a Grounding DINO backend
- order: 15
- tier: all
- title: Zero-shot object detection and image segmentation with Grounding DINO
- type: guide
- url: /tutorials/grounding_dino.html
-- categories:
- - Computer Vision
- - Video Annotation
- - Object Detection
- - Segment Anything Model
- hide_frontmatter_title: true
- hide_menu: true
- image: /tutorials/sam2-video.png
- meta_title: Using SAM2 with Label Studio for Video Annotation
- order: 15
- tier: all
- title: SAM2 with Videos
- type: guide
- url: /tutorials/segment_anything_2_video.html
- categories:
- Natural Language Processing
- Text Classification
@@ -49,94 +19,104 @@
- categories:
- Computer Vision
- Optical Character Recognition
- - Tesseract
+ - EasyOCR
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/tesseract.png
- meta_description: Tutorial for how to use Label Studio and Tesseract to assist with
- your OCR projects
- meta_title: Interactive bounding boxes OCR in Label Studio with a Tesseract backend
- order: 55
+ image: /tutorials/easyocr.png
+ meta_description: The EasyOCR model connection integrates the capabilities of EasyOCR
+ with Label Studio to assist in machine learning labeling tasks involving Optical
+ Character Recognition (OCR).
+ meta_title: EasyOCR model connection for transcribing text in images
+ order: 40
tier: all
- title: Interactive bounding boxes OCR with Tesseract
+ title: Transcribe text from images with EasyOCR
type: guide
- url: /tutorials/tesseract.html
+ url: /tutorials/easyocr.html
- categories:
- - Generative AI
- - Retrieval Augmented Generation
- - Google
- - OpenAI
- - Langchain
+ - Natural Language Processing
+ - Named Entity Recognition
+ - Flair
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/langchain.png
- meta_description: Use Langchain, OpenAI, and Google to generate responses based
- on Google search results.
- meta_title: RAG with a Langchain search agent
- order: 45
+ image: /tutorials/flair.png
+ meta_description: Tutorial on how to use Label Studio and Flair for faster NER labeling
+ meta_title: Use Flair with Label Studio
+ order: 75
tier: all
- title: RAG with a Langchain search agent
+ title: NER labeling with Flair
type: guide
- url: /tutorials/langchain_search_agent.html
+ url: /tutorials/flair.html
- categories:
- - Audio/Speech Processing
- - Automatic Speech Recognition
- - NeMo
- - NVidia
+ - Natural Language Processing
+ - Named Entity Recognition
+ - GLiNER
+ - BERT
+ - Hugging Face
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/nvidia.png
- meta_description: Tutorial on how to use set up Nvidia NeMo to use for ASR tasks
- in Label Studio
- meta_title: Automatic Speech Recognition with NeMo
- order: 60
+ image: /tutorials/gliner.png
+ meta_description: Tutorial on how to use GLiNER with your Label Studio project to
+ complete NER tasks
+ meta_title: Use GLiNER for NER annotation
+ order: 37
tier: all
- title: Automatic Speech Recognition with NVidia NeMo
+ title: Use GLiNER for NER annotation
type: guide
- url: /tutorials/nemo_asr.html
+ url: /tutorials/gliner.html
- categories:
- - Natural Language Processing
- - Named Entity Recognition
- - Interactive matching
+ - Computer Vision
+ - Image Annotation
+ - Object Detection
+ - Grounding DINO
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/interactive-substring-matching.png
- meta_description: Use the interactive substring matching model for labeling NER
- tasks in Label Studio
- meta_title: Interactive substring matching for NER tasks
- order: 30
+ image: /tutorials/grounding-dino.png
+ meta_description: Label Studio tutorial for using Grounding DINO for zero-shot object
+ detection in images
+ meta_title: Image segmentation in Label Studio using a Grounding DINO backend
+ order: 15
tier: all
- title: Interactive substring matching for NER tasks
+ title: Zero-shot object detection and image segmentation with Grounding DINO
type: guide
- url: /tutorials/interactive_substring_matching.html
+ url: /tutorials/grounding_dino.html
- categories:
- Computer Vision
- - Large Language Model
- - WatsonX
+ - Image Annotation
+ - Object Detection
+ - Zero-shot Image Segmentation
+ - Grounding DINO
+ - Segment Anything Model
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/watsonx.png
- meta_title: Integrate WatsonX with Label Studio
+ image: /tutorials/grounding-sam.png
+ meta_description: Label Studio tutorial for using Grounding DINO and SAM for zero-shot
+ object detection in images
+ meta_title: Image segmentation in Label Studio using a Grounding DINO backend and
+ SAM
order: 15
tier: all
- title: Integrate WatsonX with Label Studio
+ title: Zero-shot object detection and image segmentation with Grounding DINO and
+ SAM
type: guide
- url: /tutorials/watsonx_llm.html
+ url: /tutorials/grounding_sam.html
- categories:
- - Natural Language Processing
- - Named Entity Recognition
- - SpaCy
+ - Generative AI
+ - Large Language Model
+ - Text Generation
+ - Hugging Face
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/spacy.png
- meta_description: Tutorial on how to use Label Studio and spaCy for faster NER and
- POS labeling
- meta_title: Use spaCy models with Label Studio
- order: 70
+ image: /tutorials/hf-llm.png
+ meta_description: This tutorial explains how to run Hugging Face Large Language
+ model backend in Label Studio. Hugging Face Large Language Model Backend is a
+ machine learning backend designed to work with Label Studio, providing a custom
+ model for text generation.
+ meta_title: Label Studio tutorial to run Hugging Face Large Language Model backend
+ order: 20
tier: all
- title: spaCy models for NER
+ title: Hugging Face Large Language Model (LLM)
type: guide
- url: /tutorials/spacy.html
+ url: /tutorials/huggingface_llm.html
- categories:
- Natural Language Processing
- Named Entity Recognition
@@ -154,71 +134,87 @@
url: /tutorials/huggingface_ner.html
- categories:
- Natural Language Processing
- - Text Classification
- - Scikit-learn
+ - Named Entity Recognition
+ - Interactive matching
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/scikit-learn.png
- meta_description: Tutorial on how to use an example ML backend for Label Studio
- with Scikit-learn logistic regression
- meta_title: Sklearn Text Classifier model for Label Studio
- order: 50
+ image: /tutorials/interactive-substring-matching.png
+ meta_description: Use the interactive substring matching model for labeling NER
+ tasks in Label Studio
+ meta_title: Interactive substring matching for NER tasks
+ order: 30
tier: all
- title: Sklearn Text Classifier model
+ title: Interactive substring matching for NER tasks
type: guide
- url: /tutorials/sklearn_text_classifier.html
+ url: /tutorials/interactive_substring_matching.html
- categories:
- - Computer Vision
- - Optical Character Recognition
- - EasyOCR
+ - Generative AI
+ - Retrieval Augmented Generation
+ - Google
+ - OpenAI
+ - Langchain
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/easyocr.png
- meta_description: The EasyOCR model connection integrates the capabilities of EasyOCR
- with Label Studio to assist in machine learning labeling tasks involving Optical
- Character Recognition (OCR).
- meta_title: EasyOCR model connection for transcribing text in images
- order: 40
+ image: /tutorials/langchain.png
+ meta_description: Use Langchain, OpenAI, and Google to generate responses based
+ on Google search results.
+ meta_title: RAG with a Langchain search agent
+ order: 45
tier: all
- title: Transcribe text from images with EasyOCR
+ title: RAG with a Langchain search agent
type: guide
- url: /tutorials/easyocr.html
+ url: /tutorials/langchain_search_agent.html
- categories:
- Generative AI
- Large Language Model
- - Text Generation
- - Hugging Face
+ - OpenAI
+ - Azure
+ - Ollama
+ - ChatGPT
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/hf-llm.png
- meta_description: This tutorial explains how to run Hugging Face Large Language
- model backend in Label Studio. Hugging Face Large Language Model Backend is a
- machine learning backend designed to work with Label Studio, providing a custom
- model for text generation.
- meta_title: Label Studio tutorial to run Hugging Face Large Language Model backend
- order: 20
+ image: /tutorials/llm-interactive.png
+ meta_description: Label Studio tutorial for interactive LLM labeling with OpenAI,
+ Azure, or Ollama
+ meta_title: Interactive LLM labeling with OpenAI, Azure, or Ollama
+ order: 5
tier: all
- title: Hugging Face Large Language Model (LLM)
+ title: Interactive LLM labeling with GPT
type: guide
- url: /tutorials/huggingface_llm.html
+ url: /tutorials/llm_interactive.html
- categories:
- Computer Vision
- Object Detection
- Image Annotation
- - Segment Anything Model
- - Facebook
- - ONNX
+ - OpenMMLab
+ - MMDetection
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/segment-anything.png
- meta_description: Label Studio tutorial for labeling images with MobileSAM or ONNX
- SAM.
- meta_title: Interactive annotation in Label Studio with Segment Anything Model (SAM)
- order: 10
+ image: /tutorials/openmmlab.png
+ meta_description: This is a tutorial on how to use the example MMDetection model
+ backend with Label Studio for image segmentation tasks.
+ meta_title: Object detection in images with Label Studio and MMDetection
+ order: 65
tier: all
- title: Interactive annotation with Segment Anything Model
+ title: Object detection with bounding boxes using MMDetection
type: guide
- url: /tutorials/segment_anything_model.html
+ url: /tutorials/mmdetection-3.html
+- categories:
+ - Audio/Speech Processing
+ - Automatic Speech Recognition
+ - NeMo
+ - NVidia
+ hide_frontmatter_title: true
+ hide_menu: true
+ image: /tutorials/nvidia.png
+ meta_description: Tutorial on how to use set up Nvidia NeMo to use for ASR tasks
+ in Label Studio
+ meta_title: Automatic Speech Recognition with NeMo
+ order: 60
+ tier: all
+ title: Automatic Speech Recognition with NVidia NeMo
+ type: guide
+ url: /tutorials/nemo_asr.html
- categories:
- Computer Vision
- Image Annotation
@@ -233,92 +229,112 @@
title: SAM2 with Images
type: guide
url: /tutorials/segment_anything_2_image.html
+- categories:
+ - Computer Vision
+ - Video Annotation
+ - Object Detection
+ - Segment Anything Model
+ hide_frontmatter_title: true
+ hide_menu: true
+ image: /tutorials/sam2-video.png
+ meta_title: Using SAM2 with Label Studio for Video Annotation
+ order: 15
+ tier: all
+ title: SAM2 with Videos
+ type: guide
+ url: /tutorials/segment_anything_2_video.html
+- categories:
+ - Computer Vision
+ - Object Detection
+ - Image Annotation
+ - Segment Anything Model
+ - Facebook
+ - ONNX
+ hide_frontmatter_title: true
+ hide_menu: true
+ image: /tutorials/segment-anything.png
+ meta_description: Label Studio tutorial for labeling images with MobileSAM or ONNX
+ SAM.
+ meta_title: Interactive annotation in Label Studio with Segment Anything Model (SAM)
+ order: 10
+ tier: all
+ title: Interactive annotation with Segment Anything Model
+ type: guide
+ url: /tutorials/segment_anything_model.html
- categories:
- Natural Language Processing
- - Named Entity Recognition
- - GLiNER
- - BERT
- - Hugging Face
+ - Text Classification
+ - Scikit-learn
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/gliner.png
- meta_description: Tutorial on how to use GLiNER with your Label Studio project to
- complete NER tasks
- meta_title: Use GLiNER for NER annotation
- order: 37
+ image: /tutorials/scikit-learn.png
+ meta_description: Tutorial on how to use an example ML backend for Label Studio
+ with Scikit-learn logistic regression
+ meta_title: Sklearn Text Classifier model for Label Studio
+ order: 50
tier: all
- title: Use GLiNER for NER annotation
+ title: Sklearn Text Classifier model
type: guide
- url: /tutorials/gliner.html
+ url: /tutorials/sklearn_text_classifier.html
- categories:
- Natural Language Processing
- Named Entity Recognition
- - Flair
+ - SpaCy
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/flair.png
- meta_description: Tutorial on how to use Label Studio and Flair for faster NER labeling
- meta_title: Use Flair with Label Studio
- order: 75
+ image: /tutorials/spacy.png
+ meta_description: Tutorial on how to use Label Studio and spaCy for faster NER and
+ POS labeling
+ meta_title: Use spaCy models with Label Studio
+ order: 70
tier: all
- title: NER labeling with Flair
+ title: spaCy models for NER
type: guide
- url: /tutorials/flair.html
+ url: /tutorials/spacy.html
- categories:
- - Generative AI
- - Large Language Model
- - OpenAI
- - Azure
- - Ollama
- - ChatGPT
+ - Computer Vision
+ - Optical Character Recognition
+ - Tesseract
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/llm-interactive.png
- meta_description: Label Studio tutorial for interactive LLM labeling with OpenAI,
- Azure, or Ollama
- meta_title: Interactive LLM labeling with OpenAI, Azure, or Ollama
- order: 5
+ image: /tutorials/tesseract.png
+ meta_description: Tutorial for how to use Label Studio and Tesseract to assist with
+ your OCR projects
+ meta_title: Interactive bounding boxes OCR in Label Studio with a Tesseract backend
+ order: 55
tier: all
- title: Interactive LLM labeling with GPT
+ title: Interactive bounding boxes OCR with Tesseract
type: guide
- url: /tutorials/llm_interactive.html
+ url: /tutorials/tesseract.html
- categories:
- - Computer Vision
- - Object Detection
- - Image Annotation
- - OpenMMLab
- - MMDetection
+ - Generative AI
+ - Large Language Model
+ - WatsonX
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/openmmlab.png
- meta_description: This is a tutorial on how to use the example MMDetection model
- backend with Label Studio for image segmentation tasks.
- meta_title: Object detection in images with Label Studio and MMDetection
- order: 65
+ image: /tutorials/watsonx.png
+ meta_title: Integrate WatsonX with Label Studio
+ order: 15
tier: all
- title: Object detection with bounding boxes using MMDetection
+ title: Integrate WatsonX with Label Studio
type: guide
- url: /tutorials/mmdetection-3.html
+ url: /tutorials/watsonx_llm.html
- categories:
- Computer Vision
- - Image Annotation
- Object Detection
- - Zero-shot Image Segmentation
- - Grounding DINO
- - Segment Anything Model
+ - Image Segmentation
+ - YOLO
hide_frontmatter_title: true
hide_menu: true
- image: /tutorials/grounding-sam.png
- meta_description: Label Studio tutorial for using Grounding DINO and SAM for zero-shot
- object detection in images
- meta_title: Image segmentation in Label Studio using a Grounding DINO backend and
- SAM
- order: 15
+ image: /tutorials/yolo.png
+ meta_description: Tutorial on how to use an example ML backend for Label Studio
+ with YOLO
+ meta_title: YOLO ML Backend for Label Studio
+ order: 50
tier: all
- title: Zero-shot object detection and image segmentation with Grounding DINO and
- SAM
+ title: YOLO ML Backend for Label Studio
type: guide
- url: /tutorials/grounding_sam.html
+ url: /tutorials/yolo.html
layout: templates
meta_description: Tutorial documentation for setting up a machine learning model with
predictions using PyTorch, GPT2, Sci-kit learn, and other popular frameworks.
diff --git a/docs/source/tutorials/bert_classifier.md b/docs/source/tutorials/bert_classifier.md
index 06872e582a74..97594b68a1a1 100644
--- a/docs/source/tutorials/bert_classifier.md
+++ b/docs/source/tutorials/bert_classifier.md
@@ -15,10 +15,6 @@ categories:
image: "/tutorials/bert.png"
---
-
-
# BERT-based text classification
The NewModel is a BERT-based text classification model that is designed to work with Label Studio. This model uses the Hugging Face Transformers library to fine-tune a BERT model for text classification. The model is trained on the labeled data from Label Studio and then used to make predictions on new data. With this model connected to Label Studio, you can:
diff --git a/docs/source/tutorials/easyocr.md b/docs/source/tutorials/easyocr.md
index a32058cbbbda..82ac3b4fccbf 100644
--- a/docs/source/tutorials/easyocr.md
+++ b/docs/source/tutorials/easyocr.md
@@ -14,10 +14,6 @@ categories:
image: "/tutorials/easyocr.png"
---
-
-
# EasyOCR model connection
The [EasyOCR](https://github.com/JaidedAI/EasyOCR) model connection is a powerful tool that integrates the capabilities of EasyOCR with Label Studio. It is designed to assist in machine learning labeling tasks, specifically those involving Optical Character Recognition (OCR).
diff --git a/docs/source/tutorials/flair.md b/docs/source/tutorials/flair.md
index 899cb8f82423..6008612eb4df 100644
--- a/docs/source/tutorials/flair.md
+++ b/docs/source/tutorials/flair.md
@@ -14,10 +14,6 @@ categories:
image: "/tutorials/flair.png"
---
-
-
# Flair NER example
This example demonstrates how to use Flair NER model with Label Studio.
diff --git a/docs/source/tutorials/gliner.md b/docs/source/tutorials/gliner.md
index 31048adba9d6..e2c8e28dbc16 100644
--- a/docs/source/tutorials/gliner.md
+++ b/docs/source/tutorials/gliner.md
@@ -16,10 +16,6 @@ categories:
image: "/tutorials/gliner.png"
---
-
-
# Use GLiNER for NER annotation
The GLiNER model is a BERT family model for generalist NER. We download the model from HuggingFace, but the original
diff --git a/docs/source/tutorials/grounding_dino.md b/docs/source/tutorials/grounding_dino.md
index 5b91a0a4ccee..e27776f26f90 100644
--- a/docs/source/tutorials/grounding_dino.md
+++ b/docs/source/tutorials/grounding_dino.md
@@ -15,10 +15,6 @@ categories:
image: "/tutorials/grounding-dino.png"
---
-
-
https://github.com/HumanSignal/label-studio-ml-backend/assets/106922533/d1d2f233-d7c0-40ac-ba6f-368c3c01fd36
diff --git a/docs/source/tutorials/grounding_sam.md b/docs/source/tutorials/grounding_sam.md
index 002ddfd5b102..37bb01383a52 100644
--- a/docs/source/tutorials/grounding_sam.md
+++ b/docs/source/tutorials/grounding_sam.md
@@ -125,4 +125,4 @@ https://github.com/HumanSignal/label-studio-ml-backend/assets/106922533/79b788e3
Adjust `BOX_THRESHOLD` and `TEXT_THRESHOLD` values in the Dockerfile to a number between 0 to 1 if experimenting. Defaults are set in `dino.py`. For more information about these values, [click here](https://github.com/IDEA-Research/GroundingDINO#star-explanationstips-for-grounding-dino-inputs-and-outputs).
-If you want to use SAM models saved from either directories, you can use the `MOBILESAM_CHECKPOINT` and `SAM_CHECKPOINT` as shown in the Dockerfile.
+If you want to use SAM models saved from either directories, you can use the `MOBILESAM_CHECKPOINT` and `SAM_CHECKPOINT` as shown in the Dockerfile.
\ No newline at end of file
diff --git a/docs/source/tutorials/huggingface_llm.md b/docs/source/tutorials/huggingface_llm.md
index 8f0f177471c2..6daa9ae78982 100644
--- a/docs/source/tutorials/huggingface_llm.md
+++ b/docs/source/tutorials/huggingface_llm.md
@@ -15,10 +15,6 @@ categories:
image: "/tutorials/hf-llm.png"
---
-
-
# Hugging Face Large Language Model backend
This machine learning backend is designed to work with Label Studio, providing a custom model for text generation. The model is based on the Hugging Face's transformers library and uses a pre-trained model.
diff --git a/docs/source/tutorials/huggingface_ner.md b/docs/source/tutorials/huggingface_ner.md
index 00cc99eb968a..ff68d2a13114 100644
--- a/docs/source/tutorials/huggingface_ner.md
+++ b/docs/source/tutorials/huggingface_ner.md
@@ -14,10 +14,6 @@ categories:
image: "/tutorials/hf-ner.png"
---
-
-
# Hugging Face NER model with Label Studio
This project uses a custom machine learning backend model for Named Entity Recognition (NER) with Hugging Face's transformers and Label Studio.
diff --git a/docs/source/tutorials/interactive_substring_matching.md b/docs/source/tutorials/interactive_substring_matching.md
index 6ec043868766..c271b10730ba 100644
--- a/docs/source/tutorials/interactive_substring_matching.md
+++ b/docs/source/tutorials/interactive_substring_matching.md
@@ -14,10 +14,6 @@ categories:
image: "/tutorials/interactive-substring-matching.png"
---
-
-
# Interactive substring matching
The Machine Learning (ML) backend is designed to enhance the efficiency of auto-labeling in Named Entity Recognition (NER) tasks. It achieves this by selecting a keyword and automatically matching the same keyword in the provided text.
diff --git a/docs/source/tutorials/langchain_search_agent.md b/docs/source/tutorials/langchain_search_agent.md
index d67cfd453546..bfb22480188f 100644
--- a/docs/source/tutorials/langchain_search_agent.md
+++ b/docs/source/tutorials/langchain_search_agent.md
@@ -16,12 +16,6 @@ categories:
image: "/tutorials/langchain.png"
---
-
-
-
-
# Langchain search agent
This example demonstrates how to use Label Studio with a custom Machine Learning backend.
diff --git a/docs/source/tutorials/llm_interactive.md b/docs/source/tutorials/llm_interactive.md
index f2f0a16dbd42..d7234a59d7ea 100644
--- a/docs/source/tutorials/llm_interactive.md
+++ b/docs/source/tutorials/llm_interactive.md
@@ -17,10 +17,6 @@ categories:
image: "/tutorials/llm-interactive.png"
---
-
-
# Interactive LLM labeling
This example server connects Label Studio to [OpenAI](https://platform.openai.com/), [Ollama](https://ollama.com/),
diff --git a/docs/source/tutorials/mmdetection-3.md b/docs/source/tutorials/mmdetection-3.md
index 6f680e84c085..a8a95043be65 100644
--- a/docs/source/tutorials/mmdetection-3.md
+++ b/docs/source/tutorials/mmdetection-3.md
@@ -16,10 +16,6 @@ categories:
image: "/tutorials/openmmlab.png"
---
-
-
# Object detection with bounding boxes using MMDetection
https://mmdetection.readthedocs.io/en/latest/
@@ -27,7 +23,7 @@ https://mmdetection.readthedocs.io/en/latest/
This example demonstrates how to use the MMDetection model with Label Studio to annotate images with bounding boxes.
The model is based on the YOLOv3 architecture with a MobileNetV2 backbone and trained on the COCO dataset.
-![screenshot.png](/tutorials/screenshot.png)
+![screenshot.png](screenshot.png)
## Quick usage
@@ -164,4 +160,4 @@ gunicorn --preload --bind :9090 --workers 1 --threads 1 --timeout 0 _wsgi:app
```
* Use this guide to find out your access token: https://labelstud.io/guide/api.html
-* You can use and increased value of `SCORE_THRESHOLD` parameter when you see a lot of unwanted detections or lower its value if you don't see any detections.
+* You can use and increased value of `SCORE_THRESHOLD` parameter when you see a lot of unwanted detections or lower its value if you don't see any detections.
\ No newline at end of file
diff --git a/docs/source/tutorials/models.md b/docs/source/tutorials/models.md
new file mode 100644
index 000000000000..98de338a9d10
--- /dev/null
+++ b/docs/source/tutorials/models.md
@@ -0,0 +1 @@
+t your YOLO models here.
\ No newline at end of file
diff --git a/docs/source/tutorials/nemo_asr.md b/docs/source/tutorials/nemo_asr.md
index 413375d1e390..b88a410a7cdc 100644
--- a/docs/source/tutorials/nemo_asr.md
+++ b/docs/source/tutorials/nemo_asr.md
@@ -15,10 +15,6 @@ categories:
image: "/tutorials/nvidia.png"
---
-
-
# ASR with NeMo
This example demonstrates how to use the [NeMo](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/asr/README.md) to perform ASR (Automatic Speech Recognition) in Label Studio.
diff --git a/docs/source/tutorials/segment_anything_2_image.md b/docs/source/tutorials/segment_anything_2_image.md
index 75d2368de652..71e82cf6ba19 100644
--- a/docs/source/tutorials/segment_anything_2_image.md
+++ b/docs/source/tutorials/segment_anything_2_image.md
@@ -14,10 +14,6 @@ categories:
image: "/tutorials/sam2-images.png"
---
-
-
# Using SAM2 with Label Studio for Image Annotation
Segment Anything 2, or SAM 2, is a model released by Meta in July 2024. An update to the original Segment Anything Model,
diff --git a/docs/source/tutorials/segment_anything_2_video.md b/docs/source/tutorials/segment_anything_2_video.md
index 7561c8f7b6c2..1d081f3c1148 100644
--- a/docs/source/tutorials/segment_anything_2_video.md
+++ b/docs/source/tutorials/segment_anything_2_video.md
@@ -14,10 +14,6 @@ categories:
image: "/tutorials/sam2-video.png"
---
-
-
# Using SAM2 with Label Studio for Video Annotation
This guide describes the simplest way to start using **SegmentAnything 2** with Label Studio.
@@ -25,7 +21,7 @@ This guide describes the simplest way to start using **SegmentAnything 2** with
This repository is specifically for working with object tracking in videos. For working with images,
see the [segment_anything_2_image repository](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/segment_anything_2_image)
-![sam2](/tutorials/Sam2Video.gif)
+![sam2](./Sam2Video.gif)
## Running from source
@@ -81,4 +77,4 @@ If you want to contribute to this repository to help with some of these limitati
## Customization
-The ML backend can be customized by adding your own models and logic inside the `./segment_anything_2_video` directory.
+The ML backend can be customized by adding your own models and logic inside the `./segment_anything_2_video` directory.
\ No newline at end of file
diff --git a/docs/source/tutorials/segment_anything_model.md b/docs/source/tutorials/segment_anything_model.md
index a6460cfff782..b7a7a1a6eb55 100644
--- a/docs/source/tutorials/segment_anything_model.md
+++ b/docs/source/tutorials/segment_anything_model.md
@@ -17,10 +17,6 @@ categories:
image: "/tutorials/segment-anything.png"
---
-
-
# Interactive annotation in Label Studio with Segment Anything Model
https://github.com/shondle/label-studio-ml-backend/assets/106922533/42a8a535-167c-404a-96bd-c2e2382df99a
diff --git a/docs/source/tutorials/sklearn_text_classifier.md b/docs/source/tutorials/sklearn_text_classifier.md
index 454d1ca59983..ee4102ed65f3 100644
--- a/docs/source/tutorials/sklearn_text_classifier.md
+++ b/docs/source/tutorials/sklearn_text_classifier.md
@@ -14,10 +14,6 @@ categories:
image: "/tutorials/scikit-learn.png"
---
-
-
# Sklearn Text Classifier model for Label Studio
The Sklearn Text Classifier model is a custom machine learning backend for Label Studio. It uses a [Logistic Regression model from the Scikit-learn](https://scikit-learn.org/) library to classify text data. This model is particularly useful for text classification tasks in Label Studio, providing an efficient way to generate pre-annotations based on the model's predictions.
diff --git a/docs/source/tutorials/spacy.md b/docs/source/tutorials/spacy.md
index e220c32fae40..3a2567f6069e 100644
--- a/docs/source/tutorials/spacy.md
+++ b/docs/source/tutorials/spacy.md
@@ -14,10 +14,6 @@ categories:
image: "/tutorials/spacy.png"
---
-
-
This ML backend provides a simple way to use [spaCy](https://spacy.io/) models for Named Entity Recognition (NER) and Part-of-Speech (POS) tagging.
Current implementation includes the following models:
diff --git a/docs/source/tutorials/tesseract.md b/docs/source/tutorials/tesseract.md
index a4221a74ad2b..d05996faa91b 100644
--- a/docs/source/tutorials/tesseract.md
+++ b/docs/source/tutorials/tesseract.md
@@ -14,10 +14,6 @@ categories:
image: "/tutorials/tesseract.png"
---
-
-
# Interactive bounding boxes OCR using Tesseract
Use an OCR engine for interactive ML-assisted labeling, facilitating faster
@@ -175,4 +171,4 @@ Example below:
Reference links:
- https://labelstud.io/blog/Improve-OCR-quality-with-Tesseract-and-Label-Studio.html
-- https://labelstud.io/blog/release-130.html
+- https://labelstud.io/blog/release-130.html
\ No newline at end of file
diff --git a/docs/source/tutorials/watsonx_llm.md b/docs/source/tutorials/watsonx_llm.md
index abfd477bd703..814f60a79b92 100644
--- a/docs/source/tutorials/watsonx_llm.md
+++ b/docs/source/tutorials/watsonx_llm.md
@@ -13,10 +13,6 @@ categories:
image: "/tutorials/watsonx.png"
---
-
-
# Integrate WatsonX to Label Studio
WatsonX offers a suite of machine learning tools, including access to many LLMs, prompt
@@ -167,4 +163,4 @@ To get the host and port information below, you can follow the steps under [Pre-
- `WATSONX_ENG_PORT` - the port information for your WatsonX.data Engine
- `WATSONX_CATALOG` - the name of the catalog for the table you'll insert your data into. Must be created in the WatsonX.data platform.
- `WATSONX_SCHEMA` - the name of the schema for the table you'll insert your data into. Must be created in the WatsonX.data platform.
-- `WATSONX_TABLE` - the name of the table you'll insert your data into. Does not need to be already created.
+- `WATSONX_TABLE` - the name of the table you'll insert your data into. Does not need to be already created.
\ No newline at end of file
diff --git a/docs/source/tutorials/yolo.md b/docs/source/tutorials/yolo.md
new file mode 100644
index 000000000000..c287917662ee
--- /dev/null
+++ b/docs/source/tutorials/yolo.md
@@ -0,0 +1,808 @@
+---
+title: YOLO ML Backend for Label Studio
+type: guide
+tier: all
+order: 50
+hide_menu: true
+hide_frontmatter_title: true
+meta_title: YOLO ML Backend for Label Studio
+meta_description: Tutorial on how to use an example ML backend for Label Studio with YOLO
+categories:
+ - Computer Vision
+ - Object Detection
+ - Image Segmentation
+ - YOLO
+image: "/tutorials/yolo.png"
+---
+
+# YOLO ML backend for Label Studio
+
+The YOLO ML backend for Label Studio is designed to integrate advanced object detection,
+segmentation, classification, and video object tracking capabilities directly into Label Studio.
+
+This integration allows you to leverage powerful YOLOv8 models for various machine learning tasks,
+making it easier to annotate large datasets and ensure high-quality predictions.
+
+
+
+
+**Supported Features**
+
+| YOLO Task Name | LS Control Tag | Prediction Supported | LS Import Supported | LS Export Supported |
+|---------------------------------------|--------------------------------------|----------------------|---------------------|---------------------|
+| Object Detection | `` | ✅ | YOLO, COCO | YOLO, COCO |
+| Oriented Bounding Boxes (OBB) | `` | ✅ | YOLO | YOLO |
+| Image Instance Segmentation: Polygons | `` | ✅ | COCO | YOLO, COCO |
+| Image Semantic Segmentation: Masks | `` | ❌ | Native | Native |
+| Image Classification | `` | ✅ | Native | Native |
+| Pose Detection | `` | ✅ | Native | Native |
+| Video Object Tracking | `` | ✅ | Native | Native |
+| Video Temporal Classification | `` | Coming soon | Native | Native |
+
+* **LS Control Tag**: Label Studio [control tag](https://labelstud.io/tags/) from the labeling configuration.
+* **LS Import Supported**: Indicates whether Label Studio supports Import from YOLO format to Label Studio (using the LS converter).
+* **LS Export Supported**: Indicates whether Label Studio supports Export from Label Studio to YOLO format (the **Export** button on the Data Manager and using the LS converter).
+* **Native**: Native means that only native Label Studio JSON format is supported.
+
+
+## Before you begin
+
+Before you begin, you need to install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
+
+This tutorial uses the [YOLO example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/yolo).
+
+## Quick start
+
+1. Add `LABEL_STUDIO_URL` and `LABEL_STUDIO_API_KEY` to the `docker-compose.yml` file. These variables should point to your Label Studio instance and its API key, respectively. For more information about finding your Label Studio API key, [see our documentation](https://labelstud.io/guide/user_account#Access-token).
+
+2. Run docker compose
+
+ ```bash
+ docker-compose up --build
+ ```
+
+3. Open Label Studio and create a new project with the following labeling config:
+
+ ```xml
+
+
+
+
+
+
+ ```
+
+4. Then from the **Model** page in the project settings, [connect the model](https://labelstud.io/guide/ml#Connect-the-model-to-Label-Studio). The default URL is `http://localhost:9090`.
+
+5. Add images to Label Studio.
+
+6. Open any task in the Data Manager and see the predictions from the YOLO model.
+
+## Labeling configurations
+
+### Supported object & control tags
+
+**Object tags**
+
+- `` - [Image to annotate](https://labelstud.io/tags/image)
+- `