-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_DetNN.py
685 lines (608 loc) · 25.2 KB
/
baseline_DetNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
import copy
import time
import yaml
import wandb
import torch
torch.set_num_threads(4)
from torch import optim, nn
import torch.nn.functional as F
from sklearn import metrics
from sklearn.metrics import precision_score, recall_score, f1_score
from collections import Counter
from config_args import parser
from common_tools import create_path, set_device, dictToObj, set_random_seeds
from data.tinyImageNet import tinyImageNetVague
from data.cifar100 import CIFAR100Vague
from data.breeds import BREEDSVague
from data.nabirds import NabirdsVague
from data.mnist import MNIST
from data.fmnist import FMNIST
from data.cifar10h import CIFAR10h
from data.cifar10 import CIFAR10
from data.tinyGroup2 import tinyGroup2
from backbones import EfficientNet_pretrain, ResNet50, ResNet18, VGG16, LeNet
from helper_functions import js_subset, acc_subset, fscore_convert
def train_valid_log(phase, epoch, accDup, accGT, loss):
wandb.log({
f"{phase}_epoch": epoch,
f"{phase}_loss": loss,
f"{phase}_accDup": accDup,
f"{phase}_accGT": accGT}, step=epoch)
print(f"{phase.capitalize()} loss: {loss:.4f} accDup: {accDup:.4f} accGT: {accGT:.4f}")
def test_result_log(
js_result, js_result_f1,
prec_recall_f, js_comp, js_singl,
nonvague_acc, nonvague_acc_singl,
bestModel=False):
if bestModel:
tag = "TestB"
else:
tag = "TestF"
wandb.log({
f"{tag} JSoverall": js_result[0],
f"{tag} JScomp": js_result[1], # JS of composite examples (predicted, not true label)
f"{tag} JSsngl": js_result[2], # JS of singleton examples (predicted, not true label)
f"{tag} JScompOrig": js_result_f1[0],
f"{tag} JSsnglOrig": js_result_f1[1],
f"{tag} JScompF1": js_result_f1[2],
f"{tag} JSsnglF1": js_result_f1[3],
f"{tag} CmpPreci": prec_recall_f[0],
f"{tag} CmpRecal": prec_recall_f[1],
f"{tag} CmpFscor": prec_recall_f[2],
f"{tag} js_comp": js_comp,
f"{tag} js_singl": js_singl,
f"{tag} accNonVague": nonvague_acc,
f"{tag} accNonVagueSingl": nonvague_acc_singl})
print(f"{tag} accNonVague: {nonvague_acc:.4f},\n\
accNonVagueSingl: {nonvague_acc_singl:.4f},\n \
JS(O_V_N): {js_result}, P_R_F_compGTcnt_cmpPREDcnt: {prec_recall_f}\n")
def validate(model, dataloader, criterion, device):
print("Validating...")
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0.0
dataset_size_val = len(dataloader.dataset)
for batch_idx, (inputs, single_labels_GT, single_label_dup) in enumerate(dataloader):
inputs = inputs.to(device, non_blocking=True)
# labels = single_labels_GT.to(device, non_blocking=True)
labels = single_label_dup.to(device, non_blocking=True) ### important
# forward
with torch.no_grad():
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# statistics
batch_size = inputs.size(0)
running_loss += loss.item() * batch_size
running_corrects += torch.sum(preds == labels)
epoch_loss = running_loss / dataset_size_val
epoch_acc = running_corrects / dataset_size_val
epoch_acc = epoch_acc.detach()
return epoch_acc, epoch_loss
def train_DetNN(
model,
mydata,
criterion,
optimizer,
scheduler=None,
num_epochs=25,
device=None,
logdir = "./",
):
wandb.watch(model, log="all", log_freq=100)
since = time.time()
dataloader = mydata.train_loader
dataset_size_train = len(dataloader.dataset)
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
best_epoch = 0
for epoch in range(num_epochs):
begin_epoch = time.time()
print("Epoch {}/{}".format(epoch, num_epochs - 1))
print("-" * 10)
print("Training...")
print(f" get last lr:{scheduler.get_last_lr()}") if scheduler else ""
model.train() # Set model to training mode
running_loss = 0.0
running_corrects = 0.0
running_corrects_GT = 0.0
epoch_acc, epoch_acc_GT = 0.0, 0.0
# Iterate over data.
for batch_idx, (inputs, single_labels_GT, labels) in enumerate(dataloader):
inputs = inputs.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
single_labels_GT = single_labels_GT.to(device, non_blocking=True)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# statistics
batch_size = inputs.size(0)
running_loss += loss.detach() * batch_size
running_corrects += torch.sum(preds == labels)
running_corrects_GT += torch.sum(preds == single_labels_GT)
if scheduler is not None:
scheduler.step()
epoch_loss = running_loss / dataset_size_train
epoch_acc = running_corrects / dataset_size_train
epoch_acc = epoch_acc.detach()
epoch_acc_GT = running_corrects_GT / dataset_size_train
epoch_acc_GT = epoch_acc_GT.detach()
train_valid_log("train", epoch, epoch_acc, epoch_acc_GT, epoch_loss)
time_epoch_train = time.time() - begin_epoch
print(
f"Finish the Train in this epoch in {time_epoch_train//60:.0f}m {time_epoch_train%60:.0f}s.")
# Validation phase
valid_acc, valid_loss = validate(model, mydata.valid_loader, criterion, device)
train_valid_log("valid", epoch, valid_acc, 0, valid_loss)
if valid_acc > best_acc:
best_acc = valid_acc
best_epoch = epoch
wandb.run.summary["best_valid_acc"] = valid_acc
print(f"The best epoch: {best_epoch}, acc: {best_acc:.4f}.")
best_model_wts = copy.deepcopy(model.state_dict()) # deep copy the model
time_epoch = time.time() - begin_epoch
print(f"Finish the EPOCH in {time_epoch//60:.0f}m {time_epoch%60:.0f}s.")
time.sleep(0.5)
time_elapsed = time.time() - since
print(f"TRAINing complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s.")
final_model_wts = copy.deepcopy(model.state_dict()) # view the model in the last epoch is the best
model.load_state_dict(final_model_wts)
print(f"Best val epoch: {best_epoch}, Acc: {best_acc:4f}")
model_best = copy.deepcopy(model)
# load best model weights
model_best.load_state_dict(best_model_wts)
return model, model_best, best_epoch
def js_baseline(output, labels, R, cutoff, detNN=True):
if detNN:
p_exp = F.softmax(output, dim=1)
else:
alpha = torch.add(output, 1)
alpha_sum = torch.sum(alpha, dim=1)
# Get the predicted labels
p_exp = torch.div(alpha, alpha_sum[:, None])
predicted_labels = torch.argmax(p_exp, dim=1)
js = 0.0
for i in range(len(labels)):
indices = (p_exp[i] >= cutoff).nonzero(as_tuple=True)[0]
predicted_set = set(indices.tolist())
if len(predicted_set) == 1:
predicted_set = set(R[predicted_labels[i].item()])
ground_truth_set = set(R[labels[i]])
intersect = predicted_set.intersection(ground_truth_set)
union = predicted_set.union(ground_truth_set)
js += float(len(intersect)) / len(union)
return js
@torch.no_grad()
def evaluate_cutoff(
model, val_loader, R,
cutoff, device,
detNN=True):
model.eval()
js = 0.0
total_samples = 0
# losses = []
for batch in val_loader:
images, _, labels = batch
images, labels = images.to(device, non_blocking=True), labels.to(device, non_blocking=True)
output = model(images)
js += js_baseline(output, labels, R, cutoff, detNN=detNN)
total_samples += len(labels)
js_avg = js / total_samples
return js_avg # overall JS
def get_cutoff(
model, val_loader, R,
device,
detNN=True): #todo: could be better for efficiency
cutoff = 0.0
if detNN:
end_cutoff = 0.5
interval = 0.05
else:
end_cutoff = 0.05
interval = 0.001
accs = []
cutoffs = []
while cutoff <= end_cutoff:
js = evaluate_cutoff(model, val_loader, R, cutoff, device, detNN=detNN)
print(f"For cutoff = {cutoff:.3f}, Validation JS: {js:.4f}")
accs.append(js)
cutoffs.append(cutoff)
cutoff += interval
maxID = torch.argmax(torch.tensor(accs))
return cutoffs[maxID]
def calculate_metrics(output, labels, R, cutoff, detNN=True):
if detNN:
p_exp = F.softmax(output, dim=1)
else:
alpha = torch.add(output, 1)
alpha_sum = torch.sum(alpha, dim=1)
p_exp = torch.div(alpha, alpha_sum[:, None])
# Get the predicted labels
predicted_labels = torch.argmax(p_exp, dim=1)
num_singles = output.shape[1]
correct_vague = 0.0
correct_nonvague = 0.0
vague_total = 0
nonvague_total = 0
orig_correct_vague = 0.0
orig_correct_nonvague = 0.0
orig_total_vague = 0
orig_total_nonvague = 0
predSet_or_not = []
for i in range(len(labels)):
indices = (p_exp[i] >= cutoff).nonzero(as_tuple=True)[0]
predicted_set = set(indices.tolist())
if len(predicted_set) == 1:
predicted_set = set(R[predicted_labels[i].item()])
predSet_or_not.append(0) # singleton
else:
predSet_or_not.append(1)
ground_truth_set = set(R[labels[i].item()])
intersect = predicted_set.intersection(ground_truth_set)
union = predicted_set.union(ground_truth_set)
rate = float(len(intersect)) / len(union)
if len(predicted_set) == 1:
correct_nonvague += rate
nonvague_total += 1
else:
correct_vague += rate
vague_total += 1
if len(ground_truth_set) == 1:
orig_correct_nonvague += rate
orig_total_nonvague += 1
else:
orig_correct_vague += rate
orig_total_vague += 1
stat_result = [correct_nonvague, correct_vague, nonvague_total, vague_total]
orig_stat_result = [orig_correct_nonvague, orig_correct_vague, orig_total_nonvague, orig_total_vague]
predSet_or_not = torch.tensor(predSet_or_not) #1:vague, 0:non-vague
# check precision, recall, f-score for composite classes
prec_r_f = precision_recall_f_v1(labels, predSet_or_not, num_singles)
return stat_result, prec_r_f, orig_stat_result
def precision_recall_f_v1(y_test, y_pred, num_singles):
# make singleton labels 0, and composite labels 1
y_test = y_test.cpu().numpy()
y_test = y_test >= num_singles
y_pred = y_pred.cpu().numpy()
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
label_value_cnt = Counter(y_test)
pred_value_cnt = Counter(y_pred)
comp_GT_cnt = label_value_cnt[True]
cmp_pred_cnt = pred_value_cnt[True]
return precision, recall, f1, comp_GT_cnt, cmp_pred_cnt
@torch.no_grad()
def evaluate_vague_nonvague_final(
model,
test_loader,
val_loader,
R,
num_singles,
device,
detNN=True,
bestModel=False,
saved_cutoff=None):
if os.path.exists(saved_cutoff):
cutoff = torch.load(saved_cutoff)
print(f"### selected cutoff (load from saved file): {cutoff}")
else:
cutoff = get_cutoff(model, val_loader, R, device, detNN=detNN)
torch.save(cutoff, saved_cutoff)
print(f"### selected cutoff (calculated now): {cutoff}")
# if detNN:
# cutoff = 0.35
# else:
# cutoff = 0.046
# print(f"### selected cutoff (hard code for debugging): {cutoff}")
# begin evaluation
model.eval()
outputs_all = []
labels_all = []
true_labels_all = []
preds_all = []
total_correct = 0.0
total_samples = 0
for batch in test_loader:
images, single_labels_GT, labels = batch
images, labels = images.to(device, non_blocking=True), labels.to(device, non_blocking=True)
single_labels_GT = single_labels_GT.to(device, non_blocking=True)
output = model(images)
preds = output.argmax(dim=1)
total_correct += torch.sum(preds == single_labels_GT) # nonvague
total_samples += len(labels)
outputs_all.append(output)
labels_all.append(labels)
preds_all.append(preds)
true_labels_all.append(single_labels_GT)
print(f"Total samples in test set: {total_samples}")
# nonvague prediction accuracy
nonvague_acc = total_correct / total_samples
outputs_all = torch.cat(outputs_all, dim=0)
labels_all = torch.cat(labels_all, dim=0)
preds_all = torch.cat(preds_all, dim=0)
true_labels_all = torch.cat(true_labels_all, dim=0)
### only for debugging
tmp = [outputs_all, labels_all, preds_all, true_labels_all]
import pickle
if detNN:
with open("/home/cxl173430/data/uncertainty_Related/HENN_Git_VScode/HyperEvidentialNN_Results/FMNIST_overlap/sweep_DNN_0107_pretrainFalse_debug/tmp_all_preds.pkl", "wb") as f:
pickle.dump(tmp, f)
else:
with open("/home/cxl173430/data/uncertainty_Related/HENN_Git_VScode/HyperEvidentialNN_Results/FMNIST_overlap/sweep_ENN_0107_pretrainFalse_debug/tmp_all_preds.pkl", "wb") as f:
pickle.dump(tmp, f)
### end of debugging
# JS of composite examples (original, not prediction)
comp_idx = labels_all > num_singles-1
# acc_comp = acc_subset(comp_idx, labels_all, preds_all)
js_comp = js_subset(comp_idx, labels_all, preds_all, R)
# JS of singleton examples
singl_idx = labels_all < num_singles
# acc_singl = acc_subset(singl_idx, labels_all, preds_all)
js_singl = js_subset(singl_idx, labels_all, preds_all, R)
#nonvagueAcc for original singleton examples
nonvague_acc_singl = acc_subset(singl_idx, true_labels_all, preds_all)
stat_result, prec_recall_f, orig_stat_result = calculate_metrics(outputs_all, labels_all, R, cutoff, detNN=detNN)
avg_js_nonvague = stat_result[0] / (stat_result[2]+1e-10)
avg_js_vague = stat_result[1] / (stat_result[3]+1e-10)
overall_js = (stat_result[0] + stat_result[1])/(stat_result[2] + stat_result[3]+1e-10)
js_result = [overall_js, avg_js_vague, avg_js_nonvague]
avg_js_nonvague_orig = orig_stat_result[0] / (orig_stat_result[2]+1e-10)
avg_js_vague_orig = orig_stat_result[1] / (orig_stat_result[3]+1e-10)
js_vague_f1 = fscore_convert(avg_js_vague, avg_js_vague_orig)
js_nonvague_f1 = fscore_convert(avg_js_nonvague, avg_js_nonvague_orig)
js_result_f1 = [avg_js_vague_orig, avg_js_nonvague_orig, js_vague_f1, js_nonvague_f1]
test_result_log(
js_result, js_result_f1, prec_recall_f, js_comp, js_singl,
nonvague_acc, nonvague_acc_singl,
bestModel=bestModel)
def make(args):
mydata = None
num_singles = 0
num_comps = 0
milestone1 = args.milestone1
milestone2 = args.milestone2
device = args.device
if args.dataset == "tinyimagenet":
mydata = tinyImageNetVague(
args.data_dir,
num_comp=args.num_comp,
batch_size=args.batch_size,
imagenet_hierarchy_path=args.data_dir,
duplicate=True, #key duplicate
blur=args.blur,
gray=args.gray,
gauss_kernel_size=args.gauss_kernel_size,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed)
elif args.dataset == "cifar100":
mydata = CIFAR100Vague(
args.data_dir,
num_comp=args.num_comp,
batch_size=args.batch_size,
duplicate=True, #key duplicate
blur=args.blur,
gauss_kernel_size=args.gauss_kernel_size,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed,
comp_el_size=args.num_subclasses,
)
elif args.dataset in ["living17", "nonliving26", "entity13", "entity30"]:
data_path_base = os.path.join(args.data_dir, "ILSVRC/ILSVRC")
mydata = BREEDSVague(
os.path.join(data_path_base, "BREEDS/"),
os.path.join(data_path_base, 'Data', 'CLS-LOC/'),
ds_name=args.dataset,
num_comp=args.num_comp,
batch_size=args.batch_size,
duplicate=True, #key duplicate
blur=args.blur,
gauss_kernel_size=args.gauss_kernel_size,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed,
comp_el_size=args.num_subclasses,
)
elif args.dataset == "mnist":
mydata = MNIST(
args.data_dir,
batch_size=args.batch_size,
duplicate=True, #key duplicate
blur=args.blur,
gauss_kernel_size=args.gauss_kernel_size,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed,
)
elif args.dataset == "CIFAR10h":
mydata = CIFAR10h(
args.data_dir,
batch_size=args.batch_size,
duplicate=True,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed,
)
elif args.dataset == "CIFAR10":
mydata = CIFAR10(
args.data_dir,
batch_size=args.batch_size,
duplicate=True,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed,
)
elif args.dataset == "CIFAR10_overlap":
mydata = CIFAR10(
args.data_dir,
batch_size=args.batch_size,
duplicate=True,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed,
overlap=True,
)
elif args.dataset == "FMNIST_overlap":
mydata = FMNIST(
args.data_dir,
batch_size=args.batch_size,
duplicate=True,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed,
overlap=True,
)
elif args.dataset == "tinyGroup2":
mydata = tinyGroup2(
args.data_dir,
batch_size=args.batch_size,
duplicate=True,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed,
)
elif args.dataset == "nabirds":
mydata = NabirdsVague(
args.data_dir,
batch_size=args.batch_size,
blur=args.blur,
duplicate=True, #key duplicate
gauss_kernel_size=args.gauss_kernel_size,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed,
)
num_singles = mydata.num_classes
num_comps = mydata.num_comp
print(f"Data: {args.dataset}, num of singleton and composite classes: {num_singles, num_comps}")
if args.backbone == "EfficientNet-b3":
model = EfficientNet_pretrain(num_singles, pretrain=args.pretrain)
elif args.backbone == "ResNet50":
model = ResNet50(num_singles)
elif args.backbone == "ResNet18":
model = ResNet18(num_singles, pretrain=args.pretrain)
elif args.backbone == "VGG16":
model = VGG16(num_singles)
elif args.backbone == "LeNet":
model = LeNet(num_singles)
else:
print(f"### ERROR: The backbone {args.backbone} is invalid!")
model = model.to(device)
print("### Loss type: CrossEntropy (no uncertainty)")
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.init_lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[milestone1, milestone2], gamma=0.1)
return mydata, model, criterion, optimizer, scheduler
def generateSpecPath(args):
base_path = os.path.join(args.output_folder, args.saved_spec_dir)
tag0 = "_".join([f"{args.num_comp}M",
f"ker{args.gauss_kernel_size}",
f"Seed{args.seed}",
f"BB{args.backbone}",
"sweep_DNN"])
base_path_spec_hyper_0 = os.path.join(base_path, tag0)
create_path(base_path_spec_hyper_0)
base_path_spec_hyper = os.path.join(base_path_spec_hyper_0, str(args.init_lr))
create_path(base_path_spec_hyper)
return base_path_spec_hyper
def main(project_name, args_all):
# Initialize a new wandb run
with wandb.init(project=project_name, config=args_all):
# If called by wandb.agent, as below,
# this config will be set by Sweep Controller
# wandb.config has the lastest parameters
args = wandb.config
print(f"Current wandb.config: {wandb.config}")
# create a more specfic path to save the model for the current hyperparameter
base_path_spec_hyper = generateSpecPath(args)
set_random_seeds(args.seed)
device = args.device
mydata, model, criterion, optimizer, scheduler = make(args)
num_singles = mydata.num_classes
if args.train:
start = time.time()
model, model_best, epoch_best = train_DetNN(
model,
mydata,
criterion,
optimizer,
scheduler=scheduler,
num_epochs=args.epochs,
device=device,
)
state = {
"epoch_best": epoch_best,
"model_state_dict": model.state_dict(),
"model_state_dict_best": model_best.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
}
saved_path = os.path.join(base_path_spec_hyper, "model_CrossEntropy.pt")
torch.save(state, saved_path)
# saved_path_2 = os.path.join(base_path_spec_hyper, "model_CrossEntropy.pth")
# torch.save(model_best, saved_path_2)
print(f"Saved: {saved_path}")
end = time.time()
print(f'Total training time for DNN: {(end-start)//60:.0f}m {(end-start)%60:.0f}s')
else:
print(f"## No training, load trained model directly")
if args.test:
valid_loader = mydata.valid_loader
test_loader = mydata.test_loader
R = mydata.R
saved_path = os.path.join(base_path_spec_hyper, "model_CrossEntropy.pt")
checkpoint = torch.load(saved_path, map_location=device)
model.load_state_dict(checkpoint["model_state_dict"])
model.eval()
model_best_from_valid = copy.deepcopy(model)
model_best_from_valid.load_state_dict(checkpoint["model_state_dict_best"])
model_best_from_valid.eval()
# model after the final epoch
# bestModel=False
print(f"\n### Evaluate the model after all epochs:")
saved_cutoff = os.path.join(base_path_spec_hyper, "cutoff_final.pt")
evaluate_vague_nonvague_final(
model,
test_loader, valid_loader, R, num_singles, device,
detNN=True, bestModel=False, saved_cutoff=saved_cutoff)
print(f"\n### Use the model selected from validation set in Epoch {checkpoint['epoch_best']}:\n")
saved_cutoff = os.path.join(base_path_spec_hyper, "cutoff_bestEpoch.pt")
evaluate_vague_nonvague_final(
model_best_from_valid,
test_loader, valid_loader, R, num_singles, device,
detNN=True, bestModel=True, saved_cutoff=saved_cutoff)
if __name__ == "__main__":
# https://github.com/wandb/sweeps/blob/master/examples/nested-params/train-nested-py.py
# https://docs.wandb.ai/guides/track/log?_gl=1*sutwuo*_ga*MjA4NDU0MTg1My4xNjY3NDI5MDk5*_ga_JH1SJHJQXJ*MTY3Mjg2Mzk4NC45Mi4xLjE2NzI4NjUxMjguMzguMC4w#summary-metrics
args = parser.parse_args()
opt = vars(args)
# build the path to save model and results
create_path(args.output_folder)
base_path = os.path.join(args.output_folder, args.saved_spec_dir)
create_path(base_path)
config_file = os.path.join(base_path, "config.yml")
# A user-specified nested config.
CONFIG = yaml.load(open(config_file), Loader=yaml.FullLoader)
opt.update(CONFIG)
# convert args from Dict to Object
# args = dictToObj(opt)
opt["device"] = set_device(args.gpu)
# tell wandb to get started
print("All hyperparameters:", opt)
# with wandb.init(project=f"{CONFIG['dataset']}-{CONFIG['num_comp']}M-DNN", config=CONFIG):
# with wandb.init(config=CONFIG):
# config = wandb.config
project_name = "CIFAR100-5M-Ker3-DNN-sweep"
# main(project_name, opt)
sweep_id = "ai5o0sh8"
entity = "changbinli"
# wandb.agent(sweep_id, function=main(project_name, opt), entity=entity, project=project_name, count=1)
main(project_name, opt)