-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_ENN.py
414 lines (350 loc) · 15.2 KB
/
baseline_ENN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
import copy
import time
import yaml
import wandb
import torch
torch.set_num_threads(4)
from torch import optim, nn
from config_args import parser
from common_tools import create_path, set_device, set_random_seeds
from data.mnist import originalMNIST
from backbones import HENN_EfficientNet, EfficientNet_pretrain
from backbones import HENN_ResNet50, ResNet50, HENN_VGG16, HENN_LeNet
from helper_functions import one_hot_embedding
from loss import edl_mse_loss, edl_digamma_loss, edl_log_loss
def test_result_log(
nonvague_acc,
bestModel=False):
if bestModel:
tag = "TestB"
else:
tag = "TestF"
wandb.log({
f"{tag} accNonVague": nonvague_acc,
})
print(f"{tag} accNonVague: {nonvague_acc:.4f},\n")
@torch.no_grad()
def evaluate_vague_nonvague_final(
model,
test_loader,
device,
bestModel=False):
# begin evaluation
model.eval()
outputs_all = []
labels_all = []
true_labels_all = []
preds_all = []
total_correct = 0.0
total_samples = 0
for batch in test_loader:
images, single_labels_GT, labels = batch
images, labels = images.to(device, non_blocking=True), labels.to(device, non_blocking=True)
single_labels_GT = single_labels_GT.to(device, non_blocking=True)
output = model(images)
preds = output.argmax(dim=1)
total_correct += torch.sum(preds == single_labels_GT) # nonvague
total_samples += len(labels)
outputs_all.append(output)
labels_all.append(labels)
preds_all.append(preds)
true_labels_all.append(single_labels_GT)
print(f"Total samples in test set: {total_samples}")
# nonvague prediction accuracy
nonvague_acc = total_correct / total_samples
test_result_log(
nonvague_acc,
bestModel=bestModel)
def train_valid_log(phase, epoch, accDup, accGT, loss, epoch_loss_1, epoch_loss_2):
wandb.log({
f"{phase} epoch": epoch,
f"{phase} loss": loss,
f"{phase}_loss_1": epoch_loss_1,
f"{phase}_loss_2_entropy": epoch_loss_2,
f"{phase} accDup": accDup,
f"{phase} accGT": accGT}, step=epoch)
print(f"{phase.capitalize()} loss: {loss:.4f} \
(loss_1: {epoch_loss_1:.4f}, \
loss_2_entropy:{epoch_loss_2:.4f}) \
accDup: {accDup:.4f} accGT: {accGT:.4f}")
def validate(model, dataloader, criterion, K, epoch, entropy_lam, device):
print("Validating...")
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_loss_1, running_loss_2 = 0.0, 0.0
running_corrects = 0.0
dataset_size_val = len(dataloader.dataset)
for batch_idx, (inputs, single_labels_GT, single_label_dup) in enumerate(dataloader):
inputs = inputs.to(device, non_blocking=True)
labels = single_label_dup.to(device, non_blocking=True)
# forward
with torch.no_grad():
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
y = one_hot_embedding(labels, K, device)
loss, loss_first, loss_second = criterion(
outputs, y, epoch, K,
None, 0, None, entropy_lam, None, None, None,
kl_reg=False, entropy_reg=True,
exp_type=5,
device=device)
# statistics
batch_size = inputs.size(0)
running_loss += loss.item() * batch_size
running_corrects += torch.sum(preds == labels)
running_loss_1 += loss_first * batch_size
running_loss_2 += loss_second * batch_size
epoch_loss = running_loss / dataset_size_val
epoch_acc = running_corrects / dataset_size_val
epoch_acc = epoch_acc.detach()
epoch_loss_1 = running_loss_1 / dataset_size_val
epoch_loss_2 = running_loss_2 / dataset_size_val
return epoch_acc, epoch_loss, epoch_loss_1, epoch_loss_2
def train_ENN(
model,
mydata,
criterion,
optimizer,
scheduler=None,
num_epochs=25,
entropy_lam=0.1,
device=None,
):
wandb.watch(model, log="all", log_freq=100)
since = time.time()
K = mydata.num_classes
dataloader = mydata.train_loader
dataset_size_train = len(dataloader.dataset)
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
best_epoch = 0
for epoch in range(num_epochs):
begin_epoch = time.time()
print("Epoch {}/{}".format(epoch, num_epochs - 1))
print("-" * 10)
# Each epoch has a training and validation phase
print("Training...")
print(f" get last lr:{scheduler.get_last_lr()}") if scheduler else ""
model.train() # Set model to training mode
running_loss = 0.0
running_loss_1, running_loss_2 = 0.0, 0.0
running_corrects = 0.0
running_loss_GT = 0.0
running_corrects_GT = 0.0
# Iterate over data.
for batch_idx, (inputs, single_labels_GT, labels) in enumerate(dataloader):
inputs = inputs.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
single_labels_GT = single_labels_GT.to(device, non_blocking=True)
batch_size = inputs.size(0)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
y = one_hot_embedding(labels, K, device)
loss, loss_first, loss_second = criterion(
outputs, y, epoch, K,
None, 0, None, entropy_lam, None, None, None,
kl_reg=False, entropy_reg=True,
exp_type=5,
device=device)
print(f"##Epoch {epoch}- batch {batch_idx}/{len(dataloader)} loss: {loss:.4f}, loss_first: {loss_first:.4f}, loss_second: {loss_second:.4f}, acc: {torch.sum(preds == labels)/batch_size:.4f}")
print(f"output: {outputs[0]}")
loss.backward()
optimizer.step()
# statistics
running_loss += loss.detach() * batch_size
running_corrects += torch.sum(preds == labels)
running_corrects_GT += torch.sum(preds == single_labels_GT)
running_loss_1 += loss_first * batch_size
running_loss_2 += loss_second * batch_size
if scheduler is not None:
scheduler.step()
epoch_loss = running_loss / dataset_size_train
epoch_acc = running_corrects / dataset_size_train
epoch_acc = epoch_acc.detach()
epoch_acc_GT = running_corrects_GT / dataset_size_train
epoch_acc_GT = epoch_acc_GT.detach()
epoch_loss_1 = running_loss_1 / dataset_size_train
epoch_loss_2 = running_loss_2 / dataset_size_train
train_valid_log("train", epoch, epoch_acc, epoch_acc_GT, epoch_loss, epoch_loss_1, epoch_loss_2)
time_epoch_train = time.time() - begin_epoch
print(
f"Finish the Train in this epoch in {time_epoch_train//60:.0f}m {time_epoch_train%60:.0f}s.")
#validation phase
valid_acc, valid_loss, valid_run_loss_1, valid_run_loss_2 = validate(
model, mydata.valid_loader, criterion,
K, epoch, entropy_lam, device)
train_valid_log("valid", epoch, valid_acc, 0, valid_loss, valid_run_loss_1, valid_run_loss_2)
if valid_acc > best_acc:
best_acc = valid_acc
best_epoch = epoch
wandb.run.summary["best_valid_acc"] = valid_acc
print(f"The best epoch: {best_epoch}, acc: {best_acc:.4f}.")
best_model_wts = copy.deepcopy(model.state_dict()) # deep copy the model
time_epoch = time.time() - begin_epoch
print(f"Finish the EPOCH in {time_epoch//60:.0f}m {time_epoch%60:.0f}s.")
time.sleep(0.5)
time_elapsed = time.time() - since
print(f"TRAINing complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s.")
final_model_wts = copy.deepcopy(model.state_dict()) # view the model in the last epoch is the best
model.load_state_dict(final_model_wts)
print(f"Best val epoch: {best_epoch}, Acc: {best_acc:4f}")
model_best = copy.deepcopy(model)
# load best model weights
model_best.load_state_dict(best_model_wts)
return model, model_best, best_epoch
def make(args):
mydata = None
num_singles = 0
num_comps = 0
use_uncertainty = args.uncertainty
milestone1 = args.milestone1
milestone2 = args.milestone2
device = args.device
if args.dataset == "mnist":
mydata = originalMNIST(
args.data_dir,
batch_size=args.batch_size,
pretrain=args.pretrain,
num_workers=args.num_workers,
seed=args.seed)
num_singles = mydata.num_classes
num_comps = mydata.num_comp
print(f"Data: {args.dataset}, num of singleton and composite classes: {num_singles, num_comps}")
if use_uncertainty:
print("# use softplus activated model")
if args.backbone == "EfficientNet-b3":
model = HENN_EfficientNet(num_singles, pretrain=args.pretrain)
elif args.backbone == "ResNet50":
model = HENN_ResNet50(num_singles)
elif args.backbone == "VGG16":
model = HENN_VGG16(num_singles)
elif args.backbone == "LeNet":
model = HENN_LeNet(num_singles)
else:
print(f"### ERROR: The backbone {args.backbone} is invalid!")
model = model.to(device)
if use_uncertainty:
# if args.digamma:
# print("### Loss type: edl_digamma_loss")
# criterion = edl_digamma_loss
# elif args.log:
# print("### Loss type: edl_log_loss")
# criterion = edl_log_loss
# elif args.mse:
print("### Loss type: edl_digamma_loss")
criterion = edl_digamma_loss
# else:
# print("ERROR: --uncertainty requires --mse, --log or --digamma.")
else:
print("### Loss type: CrossEntropy (no uncertainty)")
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.init_lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[milestone1, milestone2], gamma=0.1)
return mydata, model, criterion, optimizer, scheduler
def generateSpecPath(
output_folder, saved_spec_dir,
num_comp,
gauss_kernel_size,
init_lr):
base_path = os.path.join(output_folder, saved_spec_dir)
tag0 = "_".join([f"{num_comp}M", f"ker{gauss_kernel_size}", "sweep_ENN"])
base_path_spec_hyper_0 = os.path.join(base_path, tag0)
create_path(base_path_spec_hyper_0)
base_path_spec_hyper = os.path.join(base_path_spec_hyper_0, str(init_lr))
create_path(base_path_spec_hyper)
return base_path_spec_hyper
def main(project_name, args_all):
# Initialize a new wandb run
with wandb.init(project=project_name, config=args_all):
# If called by wandb.agent, as below,
# this config will be set by Sweep Controller
# wandb.config has the lastest parameters
args = wandb.config
print(f"Current wandb.config: {wandb.config}")
# create a more specfic path to save the model for the current hyperparameter
base_path_spec_hyper = generateSpecPath(
args.output_folder, args.saved_spec_dir,
args.num_comp,
args.gauss_kernel_size,
args.init_lr)
set_random_seeds(args.seed)
device = args.device
mydata, model, criterion, optimizer, scheduler = make(args)
num_singles = mydata.num_classes
if args.train:
start = time.time()
model, model_best, epoch_best = train_ENN(
model,
mydata,
criterion,
optimizer,
scheduler=scheduler,
num_epochs=args.epochs,
entropy_lam=args.entropy_lam,
device=device,
)
state = {
"epoch_best": epoch_best,
"model_state_dict": model.state_dict(),
"model_state_dict_best": model_best.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
}
saved_path = os.path.join(base_path_spec_hyper, "model_uncertainty_digamma.pt")
torch.save(state, saved_path)
print(f"Saved: {saved_path}")
end = time.time()
print(f'Total training time for ENN: {(end-start)//60:.0f}m {(end-start)%60:.0f}s')
else:
print(f"## No training, load trained model directly")
if args.test:
valid_loader = mydata.valid_loader
test_loader = mydata.test_loader
use_uncertainty = args.uncertainty
if use_uncertainty:
# if args.digamma:
# saved_path = os.path.join(base_path, "model_uncertainty_digamma.pt")
# if args.log:
# saved_path = os.path.join(base_path, "model_uncertainty_log.pt")
# if args.mse:
saved_path = os.path.join(base_path_spec_hyper, "model_uncertainty_digamma.pt")
else:
saved_path = os.path.join(base_path_spec_hyper, "model_CrossEntropy.pt")
checkpoint = torch.load(saved_path, map_location=device)
model.load_state_dict(checkpoint["model_state_dict"])
model_best_from_valid = copy.deepcopy(model)
model_best_from_valid.load_state_dict(checkpoint["model_state_dict_best"])
# model after the final epoch
print(f"\n### Evaluate the model after all epochs:")
evaluate_vague_nonvague_final(
model, test_loader, device,
bestModel=False)
print(f"\n### Use the model selected from validation set in Epoch {checkpoint['epoch_best']}:\n")
evaluate_vague_nonvague_final(
model_best_from_valid, test_loader, device,
bestModel=True)
if __name__ == "__main__":
args = parser.parse_args()
opt = vars(args)
# build the path to save model and results
create_path(args.output_folder)
base_path = os.path.join(args.output_folder, args.saved_spec_dir)
create_path(base_path)
config_file = os.path.join(base_path, "config_ENN.yml")
# A user-specified nested config.
CONFIG = yaml.load(open(config_file), Loader=yaml.FullLoader)
opt.update(CONFIG)
# convert args from Dict to Object
# args = dictToObj(opt)
opt["device"] = set_device(args.gpu)
# tell wandb to get started
print("All hyperparameters:", opt)
project_name = "MNIST-0M-originalENN-sweep"
# main(project_name, opt)
entity = "changbinli"
# wandb.agent(sweep_id, function=main(project_name, opt), entity=entity, project=project_name, count=1)
main(project_name, opt)