-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalphabot2_asi.cpp
452 lines (347 loc) · 15 KB
/
alphabot2_asi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
//
// Created by Blagoj Hristov on 26/02/20.
//
#include <alphabot2_asi.h>
#include <Arduino.h>
#include <SPI.h>
#include <Wire.h>
#include <TRSensors.h>
//#include <Adafruit_NeoPixel.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define ECHO 2 // ultrasonic echo
#define TRIG 3 // ultrasonic trigger
#define PWMA 6 // motor-L speed (ENA)
#define AIN2 A0 // motor-L forward (IN2)
#define AIN1 A1 // motor-L backward (IN1)
#define PWMB 5 // motor-R speed (ENB)
#define BIN1 A2 // motor-R forward (IN3)
#define BIN2 A3 // motor-R backward (IN4)
#define PCFADR 0x20 // PCF8574 I/O expansion module address (for forward facing infrared sensors)
#define LED_PIN 7 // LEDs pin
#define OLED_RESET 9 // OLED display reset pin
#define OLED_SA0 8 // OLED display set pin
Adafruit_SSD1306 display(OLED_RESET, OLED_SA0);
//Adafruit_NeoPixel RGB = Adafruit_NeoPixel(4, LED_PIN, NEO_GRB + NEO_KHZ800); // setup RGB LEDs
TRSensors line_sensors = TRSensors(); // declare line sensors as TRSensor type object
unsigned int line_sensor_values[5]; // declare global array for line sensor values
float I = 0; // declare initial value for integral of error for PID
float time_prev = 0; // declare initial value of previous time measurement for PID
int line_pos_prev = 0; // declare initial value for previous line position for PID
long int time_start; // declare start time variable
long int time_end; // declare end time variable
long int time_elapsed; // declare elapsed time variable
void initialize(){
Serial.begin(115200);
Wire.begin();
pinMode(ECHO, INPUT); // define the ultrasonic echo input pin
pinMode(TRIG, OUTPUT); // define the ultrasonic trigger input pin
pinMode(PWMA, OUTPUT); // define the left motor speed pin
pinMode(AIN2, OUTPUT); // define the left motor forward pin
pinMode(AIN1, OUTPUT); // define the left motor backward pin
pinMode(PWMB, OUTPUT); // define the right motor speed pin
pinMode(BIN2, OUTPUT); // define the right motor forward pin
pinMode(BIN1, OUTPUT); // define the right motor backward pin
// Uncomment the calibrated_max_vals and calibrated_min_vals for YOUR robot only!
// Bot 1:
int calibrated_max_vals[5] = {937, 934, 891, 762, 955};
int calibrated_min_vals[5] = {187, 205, 156, 138, 292};
// Bot 2:
//int calibrated_max_vals[5] = {723, 758, 941, 945, 843};
//int calibrated_min_vals[5] = {150, 164, 171, 135, 133};
// Bot 3:
//int calibrated_max_vals[5] = {704, 686, 626, 958, 797};
//int calibrated_min_vals[5] = {134, 109, 116, 260, 149};
// Bot 4:
//int calibrated_max_vals[5] = {594, 678, 632, 552, 758};
//int calibrated_min_vals[5] = {150, 164, 171, 135, 133};
// Bot 5:
//int calibrated_max_vals[5] = {753, 706, 764, 940, 708};
//int calibrated_min_vals[5] = {117, 123, 126, 227, 127};
// Bot 6:
//int calibrated_max_vals[5] = {776, 586, 706, 552, 745};
//int calibrated_min_vals[5] = {228, 158, 184, 134, 222};
// Bot 7:
//int calibrated_max_vals[5] = {853, 932, 589, 913, 881};
//int calibrated_min_vals[5] = {143, 225, 160, 152, 139};
// Bot 8:
//int calibrated_max_vals[5] = {813, 787, 690, 573, 689};
//int calibrated_min_vals[5] = {199, 218, 165, 161, 186};
// Bot 9:
//int calibrated_max_vals[5] = {953, 817, 880, 770, 803};
//int calibrated_min_vals[5] = {288, 208, 239, 212, 222};
// Bot 10 (X):
//int calibrated_max_vals[5] = {941, 918, 751, 953, 698};
//int calibrated_min_vals[5] = {270, 237, 232, 363, 180};
// Bot 11:
//int calibrated_max_vals[5] = {864, 629, 724, 746, 952};
//int calibrated_min_vals[5] = {204, 160, 181, 158, 278};
// Bot 12:
//int calibrated_max_vals[5] = {681, 940, 817, 959, 596};
//int calibrated_min_vals[5] = {177, 264, 236, 269, 170};
for(int i = 0; i < 5; i++) {
line_sensors.calibratedMax[i] = calibrated_max_vals[i];
line_sensors.calibratedMin[i] = calibrated_min_vals[i];
}
display.begin(SSD1306_SWITCHCAPVCC, 0x3C); // initialize OLED display
oled_display_name(); // write competition name on OLED display (scrolling)
time_start = millis(); // read initial start time in milliseconds
}
void oled_display_name(){
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(0,2);
display.clearDisplay();
display.println("RoboMac");
display.setCursor(6,20);
display.println("Junior");
display.setCursor(17,40);
display.println("2022");
display.display();
display.startscrollright(0x00, 0x0F);
}
void oled_display_markers(int mrk){
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(0,2);
display.clearDisplay();
display.println(mrk);
display.display();
}
void oled_display_time(long int ts){
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(0,2);
display.clearDisplay();
display.println("Time:");
display.setCursor(6,20);
display.print(ts/1000);
display.print(" s");
display.display();
}
void write_PCF8574(byte data){ // write to the PCF8574 I/O expansion module
Wire.beginTransmission(PCFADR);
Wire.write(data);
Wire.endTransmission();
}
byte read_PCF8574(){ // read from the PCF8574 I/O expansion module
int data = -1;
Wire.requestFrom(PCFADR, 1);
if(Wire.available()) {
data = Wire.read();
}
return data;
}
char read_infrared(bool verbose=false){
byte value; // declare sensor value as byte type variable
write_PCF8574(0xC0 | read_PCF8574()); // write sensor output to PCF8574 I/O expansion module
value = read_PCF8574() | 0x3F; // read PCF module (sensor output)
if(verbose){ // print result
if(value == 0x7F)
Serial.println("Left sensor has detected an obstacle.");
else if(value == 0xBF)
Serial.println("Right sensor has detected an obstacle.");
else if(value == 0x3F)
Serial.println("Both sensors have detected an obstacle.");
else if(value == 0xFF)
Serial.println("No obstacle has been detected.");
}
if(value == 0x7F) // check if left sensor is active
return 'L';
else if(value == 0xBF) // check if right sensor is active
return 'R';
else if(value == 0x3F) // check if both sensors are active
return 'B';
else if(value == 0xFF) // check if no sensors are active
return 'N';
else
Serial.println("ERROR!");
}
void sort(int *arr, int n){ // function for sorting arrays
int tmp;
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
if (*(arr + j) < *(arr + i)){
tmp = *(arr + i);
*(arr + i) = *(arr + j);
*(arr + j) = tmp;
}
else{
continue;
}
}
}
}
int read_ultrasonic(bool verbose=false){
int length = 15; // number of measurements
int measurements[length];
float f_dist;
for(int i = 0; i < length; i++){ // measure 'length' times for better accuracy
digitalWrite(TRIG, LOW); // set trig pin to low for 2μs (reset trigger)
delayMicroseconds(2);
digitalWrite(TRIG, HIGH); // set trig pin to high for 10μs (generate ultrasonic sound wave)
delayMicroseconds(10);
digitalWrite(TRIG, LOW); // set trig pin to low (stop generating ultrasonic sound wave)
f_dist = pulseIn(ECHO, HIGH); // read echo pin (time for wave to bounce back)
f_dist= f_dist/58; // Y m=(X s*344)/2; X s=( 2*Y m)/344 ==》X s=0.0058*Y m ==》cm = us /58
*(measurements + i) = (int)f_dist;
}
sort(measurements, length); // sort measurements array
int distance = 0; // set initial measurement to 0
if(*measurements < 6) // if minimum measurement is < 6cm, then get the minimum (for avoiding errors)
distance = *measurements;
else
distance = *(measurements + (int)length/2); // if the measurement is > 6cm, get the middle measurement
if(verbose){ // print result
if((distance < 3) || (distance > 400)){ // ultrasonic range ranging 3cm to 400cm
Serial.println("ERROR! OUT OF RANGE! ==》Ultrasonic range: 3cm - 400cm");
}
else{
Serial.println("Distance = ");
Serial.print(distance);
Serial.println("cm");
}
}
return distance;
}
// This function is strictly for calibrating the line sensors and should NOT to be used!
void calibrate_line_sensors(){
for (int i = 0; i < 100; i++) // make the calibration take about 10 seconds
{
line_sensors.calibrate(); // reads all sensors 100 times
line_sensors.readCalibrated(line_sensor_values);
for(int i = 0; i < 5; i++){
Serial.print(line_sensor_values[i]);
Serial.print(" ");
}
Serial.println();
delay(100);
}
Serial.print("Calibrated max values: ");
for(int i = 0; i < 5; i++){
Serial.print(line_sensors.calibratedMax[i]);
Serial.print(" ");
}
Serial.println();
Serial.print("Calibrated min values: ");
for(int i = 0; i < 5; i++){
Serial.print(line_sensors.calibratedMin[i]);
Serial.print(" ");
}
Serial.println();
}
unsigned int *read_infrared_line(bool verbose=false){
line_sensors.readLine(line_sensor_values); // read sensor values
if(verbose){ // print result
Serial.print("Line sensor values: ");
for (unsigned char i = 0; i < 5; i++)
{
Serial.print(line_sensor_values[i]);
Serial.print('\t');
}
Serial.println();
}
return line_sensor_values;
}
// This function is for PID controlled line following, is not finished, and should NOT be used!
void line_follower(unsigned int *s, const float Kp, const float Ki, const float Kd, const int max_speed){
unsigned int line_pos = line_sensors.readLine(line_sensor_values); // read sensor values
float time = millis();
float dt = time - time_prev;
int error = 2000 - (int)line_pos; // calculate error in accordance to middle of line
float P = error * Kp; // calculate proportional part of PID controller
I += error * dt * Ki; // calculate integral part of PID controller
float D = (line_pos - line_pos_prev)/dt * Kd; // calculate derivative part of PID controller
time_prev = time;
line_pos_prev = line_pos;
int control_signal = (int)(P + I + D); // calculate PID controller
if (control_signal > max_speed) // regulate motor speed to be below set maximum
control_signal = max_speed;
if (control_signal < -max_speed) // regulate motor speed to be non-negative
control_signal = -max_speed;
Serial.println(control_signal); // print control signal value
if (control_signal < 0)
{
analogWrite(PWMA, max_speed + control_signal);
analogWrite(PWMB, max_speed);
}
else
{
analogWrite(PWMA, max_speed);
analogWrite(PWMB, max_speed - control_signal);
}
if (s[1] > 750 && s[2] > 750 && s[3] > 750) // check if line is still detectable
{
stay();
Serial.println("Line not detected!");
}
}
void set_motor_speed(int speed){
analogWrite(PWMA, speed); // set speed for left motor
analogWrite(PWMB, speed); // set speed for right motor
}
void set_left_motor_speed(int speed){
if(speed > 180) // max allowed speed of 180 for robot safety
speed = 180;
analogWrite(PWMA, speed); // set speed for left motor
}
void set_right_motor_speed(int speed){
if(speed > 180) // max allowed speed of 180 for robot safety
speed = 180;
analogWrite(PWMB, speed); // set speed for right motor
}
void forward(int speed){
if(speed > 180) // max allowed speed of 180 for robot safety
speed = 180;
set_motor_speed(speed); // set motor speed
digitalWrite(AIN1, LOW); // set motor-L backward pin to low
digitalWrite(AIN2, HIGH); // set motor-L forward pin to high
digitalWrite(BIN1, LOW); // set motor-R backward pin to low
digitalWrite(BIN2, HIGH); // set motor-R forward pin to high
}
void backward(int speed){
if(speed > 180) // max allowed speed of 180 for robot safety
speed = 180;
set_motor_speed(speed); // set motor speed
digitalWrite(AIN1, HIGH); // set motor-L backward pin to high
digitalWrite(AIN2, LOW); // set motor-L forward pin to low
digitalWrite(BIN1, HIGH); // set motor-R backward pin to high
digitalWrite(BIN2, LOW); // set motor-R forward pin to low
}
void left(int speed){
if(speed > 180) // max allowed speed of 180 for robot safety
speed = 180;
set_motor_speed(speed); // set motor speed
digitalWrite(AIN1, HIGH); // set motor-L backward pin to high
digitalWrite(AIN2, LOW); // set motor-L forward pin to low
digitalWrite(BIN1, LOW); // set motor-R backward pin to low
digitalWrite(BIN2, HIGH); // set motor-R forward pin to high
}
void right(int speed){
if(speed > 180) // max allowed speed of 180 for robot safety
speed = 180;
set_motor_speed(speed); // set motor speed
digitalWrite(AIN1, LOW); // set motor-L backward pin to low
digitalWrite(AIN2, HIGH); // set motor-L forward pin to high
digitalWrite(BIN1, HIGH); // set motor-R backward pin to high
digitalWrite(BIN2, LOW); // set motor-R forward pin to low
}
void stay(){
set_motor_speed(0); // set motor speed to 0
digitalWrite(AIN1, LOW); // set motor-L backward pin to low
digitalWrite(AIN2, LOW); // set motor-L forward pin to low
digitalWrite(BIN1, LOW); // set motor-R backward pin to low
digitalWrite(BIN2, LOW); // set motor-R forward pin to low
time_end = millis(); // read final end time in milliseconds
time_elapsed = time_end - time_start; // calculate elapsed time in milliseconds
oled_display_time(time_elapsed); // display elapsed time on OLED display
delay(100000);
}
/*void lights(int led_1[3], int led_2[3], int led_3[3], int led_4[3]){
RGB.begin();
RGB.setPixelColor(0, RGB.Color(led_1[0], led_1[1], led_1[2])); // set colour of first LED
RGB.setPixelColor(1, RGB.Color(led_2[0], led_2[1], led_2[2])); // set colour of second LED
RGB.setPixelColor(2, RGB.Color(led_3[0], led_3[1], led_3[2])); // set colour of third LED
RGB.setPixelColor(3, RGB.Color(led_4[0], led_4[1], led_4[2])); // set colour of fourth LED
RGB.show(); // turn on LEDs
}*/