-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathknn_ocr.py
55 lines (36 loc) · 1.49 KB
/
knn_ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# -*- coding: utf-8 -*-
import cv2
import numpy as np
def knn_ocr_normal(test):
# 训练knn模型
samples = np.load('samples.npy')
labels = np.load('label.npy')
knn = cv2.ml.KNearest_create()
knn.train(samples, cv2.ml.ROW_SAMPLE, labels)
ret, result, neighbours, dist = knn.findNearest(test, k=5)
return result
def knn_ocr_handwritten(test):
# read data set
img_digits = cv2.imread('./images/digits.png')
img_digits_gray = cv2.cvtColor(img_digits, cv2.COLOR_BGR2GRAY)
# Now we split the image to 5000 cells, each 20x20 size
cells = [np.hsplit(row, 100) for row in np.vsplit(img_digits_gray, 50)]
# Make it into a Numpy array. It size will be (50,100,20,20)
x = np.array(cells)
# Now we prepare train_data and test_data.
train = x[5:, :100].reshape(-1, 400).astype(np.float32) # Size = (5000,400)
# Create labels for train and test data
k = np.arange(1, 10)
train_labels = np.repeat(k, 500)[:, np.newaxis]
# Initiate kNN, train the data, then test it with test data for k=1
knn = cv2.ml.KNearest_create()
knn.train(train, cv2.ml.ROW_SAMPLE, train_labels)
ret, result, neighbours, dist = knn.findNearest(test, k=5)
return result
def knn_ocr_handwritten_mnist(test):
samples = np.load('samples_mnist.npy')
labels = np.load('label_mnist.npy')
knn = cv2.ml.KNearest_create()
knn.train(samples, cv2.ml.ROW_SAMPLE, labels)
ret, result, neighbours, dist = knn.findNearest(test, k=5)
return result